enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of NP-complete problems - Wikipedia

    en.wikipedia.org/wiki/List_of_NP-complete_problems

    Graph homomorphism problem [3]: GT52 Graph partition into subgraphs of specific types (triangles, isomorphic subgraphs, Hamiltonian subgraphs, forests, perfect matchings) are known NP-complete. Partition into cliques is the same problem as coloring the complement of the given graph. A related problem is to find a partition that is optimal terms ...

  3. Metric dimension (graph theory) - Wikipedia

    en.wikipedia.org/.../Metric_dimension_(graph_theory)

    Graphs with bounded cyclomatic number, vertex cover number or max leaf number all have bounded treewidth, however it is an open problem to determine the complexity of the metric dimension problem even on graphs of treewidth 2, that is, series–parallel graphs. [9]

  4. Knight's tour - Wikipedia

    en.wikipedia.org/wiki/Knight's_tour

    The knight's tour problem is the mathematical problem of finding a knight's tour. Creating a program to find a knight's tour is a common problem given to computer science students. [ 3 ] Variations of the knight's tour problem involve chessboards of different sizes than the usual 8 × 8 , as well as irregular (non-rectangular) boards.

  5. Graph theory - Wikipedia

    en.wikipedia.org/wiki/Graph_theory

    Often, the problem is to decompose a graph into subgraphs isomorphic to a fixed graph; for instance, decomposing a complete graph into Hamiltonian cycles. Other problems specify a family of graphs into which a given graph should be decomposed, for instance, a family of cycles, or decomposing a complete graph K n into n − 1 specified trees ...

  6. Hamiltonian path problem - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_path_problem

    The problems of finding a Hamiltonian path and a Hamiltonian cycle can be related as follows: In one direction, the Hamiltonian path problem for graph G can be related to the Hamiltonian cycle problem in a graph H obtained from G by adding a new universal vertex x, connecting x to all vertices of G. Thus, finding a Hamiltonian path cannot be ...

  7. Greedy coloring - Wikipedia

    en.wikipedia.org/wiki/Greedy_coloring

    In the study of graph coloring problems in mathematics and computer science, a greedy coloring or sequential coloring [1] is a coloring of the vertices of a graph formed by a greedy algorithm that considers the vertices of the graph in sequence and assigns each vertex its first available color. Greedy colorings can be found in linear time, but ...

  8. Pearls in Graph Theory - Wikipedia

    en.wikipedia.org/wiki/Pearls_in_Graph_Theory

    The "pearls" of the title include theorems, proofs, problems, and examples in graph theory.The book has ten chapters; after an introductory chapter on basic definitions, the remaining chapters material on graph coloring; Hamiltonian cycles and Euler tours; extremal graph theory; subgraph counting problems including connections to permutations, derangements, and Cayley's formula; graph ...

  9. Category:Unsolved problems in graph theory - Wikipedia

    en.wikipedia.org/wiki/Category:Unsolved_problems...

    Download as PDF; Printable version; In other projects Wikidata item; ... Pages in category "Unsolved problems in graph theory" The following 32 pages are in this ...