enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lorentz factor - Wikipedia

    en.wikipedia.org/wiki/Lorentz_factor

    Definition of the Lorentz factor γ. The Lorentz factor or Lorentz term (also known as the gamma factor [1]) is a dimensionless quantity expressing how much the measurements of time, length, and other physical properties change for an object while it moves. The expression appears in several equations in special relativity, and it arises in ...

  3. Derivations of the Lorentz transformations - Wikipedia

    en.wikipedia.org/wiki/Derivations_of_the_Lorentz...

    At any time after t = t′ = 0, xx′ is not zero, so dividing both sides of the equation by xx′ results in =, which is called the "Lorentz factor". When the transformation equations are required to satisfy the light signal equations in the form x = ct and x′ = ct′, by substituting the x and x'-values, the same technique produces the same ...

  4. Covariant formulation of classical electromagnetism - Wikipedia

    en.wikipedia.org/wiki/Covariant_formulation_of...

    The covariant formulation of classical electromagnetism refers to ways of writing the laws of classical electromagnetism (in particular, Maxwell's equations and the Lorentz force) in a form that is manifestly invariant under Lorentz transformations, in the formalism of special relativity using rectilinear inertial coordinate systems.

  5. Classical electromagnetism and special relativity - Wikipedia

    en.wikipedia.org/wiki/Classical_electromagnetism...

    is called the Lorentz factor and c is the speed of light in free space. Lorentz factor (γ) is the same in both systems. The inverse transformations are the same except for the substitution v → −v. An equivalent, alternative expression is: [3]

  6. Lorentz transformation - Wikipedia

    en.wikipedia.org/wiki/Lorentz_transformation

    It may include a rotation of space; a rotation-free Lorentz transformation is called a Lorentz boost. In Minkowski space—the mathematical model of spacetime in special relativity—the Lorentz transformations preserve the spacetime interval between any two events. They describe only the transformations in which the spacetime event at the ...

  7. Moving magnet and conductor problem - Wikipedia

    en.wikipedia.org/wiki/Moving_magnet_and...

    Relativity takes the Lorentz transformation of space-time suggested by invariance of Maxwell's equations and imposes it upon dynamics as well (a revision of Newton's laws of motion). In this example, the Lorentz transformation affects the x-direction only (the relative motion of the two frames is along the x-direction).

  8. Experimental testing of time dilation - Wikipedia

    en.wikipedia.org/wiki/Experimental_testing_of...

    Relation between the speed and the Lorentz factor γ (and hence the time dilation of moving clocks). Time dilation as predicted by special relativity is often verified by means of particle lifetime experiments. According to special relativity, the rate of a clock C traveling between two synchronized laboratory clocks A and B, as seen by a ...

  9. Reciprocity (electromagnetism) - Wikipedia

    en.wikipedia.org/wiki/Reciprocity_(electromagnetism)

    Now, the equation on the left-hand side of the Lorentz reciprocity theorem can be rewritten by moving the σ from the external current term () to the response field terms , and also adding and subtracting a () term, to obtain the external field multiplied by the total current = :