Search results
Results from the WOW.Com Content Network
Stoma in a tomato leaf shown via colorized scanning electron microscope image A stoma in horizontal cross section The underside of a leaf. In this species (Tradescantia zebrina) the guard cells of the stomata are green because they contain chlorophyll while the epidermal cells are chlorophyll-free and contain red pigments.
The stomata complex regulates the exchange of gases and water vapor between the outside air and the interior of the leaf. Typically, the stomata are more numerous over the abaxial (lower) epidermis of the leaf than the (adaxial) upper epidermis. An exception is floating leaves where most or all stomata are on the upper surface.
English: C3 and C4 plants(1) stomata stay open all day and close at night. CAM plants(2) stomata open during the morning and close slightly at noon and then open again in the morning. CAM plants(2) stomata open during the morning and close slightly at noon and then open again in the morning.
The following terms are used to describe leaf morphology in the description and taxonomy of plants. Leaves may be simple (that is, the leaf blade or 'lamina' is undivided) or compound (that is, the leaf blade is divided into two or more leaflets). [1] The edge of the leaf may be regular or irregular, and may be smooth or have hair, bristles, or ...
Guard cells have cell walls of varying thickness(its inner region, adjacent to the stomatal pore is thicker and highly cutinized [7]) and differently oriented cellulose microfibers, causing them to bend outward when they are turgid, which in turn, causes stomata to open. Stomata close when there is an osmotic loss of water, occurring from the ...
Stomatal conductance, usually measured in mmol m −2 s −1 by a porometer, estimates the rate of gas exchange (i.e., carbon dioxide uptake) and transpiration (i.e., water loss as water vapor) through the leaf stomata as determined by the degree of stomatal aperture (and therefore the physical resistances to the movement of gases between the air and the interior of the leaf).
Leaf expansion is a process by which plants make efficient use of the space around them by causing their leaves to enlarge, or wither. This process enables a plant to maximize its own biomass, whether it be due to increased surface area; which enables more sunlight to be absorbed by chloroplasts, driving the rate of photosynthesis upward, or it enables more stomata to be created on the leaf ...
Chart illustrating 61 morphological terms describing leaf shape, margins and venation. While Diliff's mega-panoramas are a hard act to follow, I thought I would throw the metaphorical hat into the ring with this illustration. I created it with the desire to make a richly encyclopedic image/poster with lots of information about leaf morphology.