Search results
Results from the WOW.Com Content Network
A typical example of glide reflection in everyday life would be the track of footprints left in the sand by a person walking on a beach. Frieze group nr. 6 (glide-reflections, translations and rotations) is generated by a glide reflection and a rotation about a point on the line of reflection. It is isomorphic to a semi-direct product of Z and C 2.
Let X be an affine space over a field k, and V be its associated vector space. An affine transformation is a bijection f from X onto itself that is an affine map; this means that a linear map g from V to V is well defined by the equation () = (); here, as usual, the subtraction of two points denotes the free vector from the second point to the first one, and "well-defined" means that ...
In mathematics, a transformation, transform, or self-map [1] is a function f, usually with some geometrical underpinning, that maps a set X to itself, i.e. f: X → X. [2] [3] [4] Examples include linear transformations of vector spaces and geometric transformations, which include projective transformations, affine transformations, and specific ...
An example of a stationary point of inflection is the point (0, 0) on the graph of y = x 3. The tangent is the x-axis, which cuts the graph at this point. An example of a non-stationary point of inflection is the point (0, 0) on the graph of y = x 3 + ax, for any nonzero a. The tangent at the origin is the line y = ax, which cuts the graph at ...
If x is a reflection point (0, 5, 10, 15, 20, or 25), its stabilizer is the group of order two containing the identity and the reflection in x. In other cases the stabilizer is the trivial group. For a fixed x in X, consider the map from G to X given by g ↦ g · x. The image of this map is the orbit of x and the coimage is the set of all left ...
In telecommunications and transmission line theory, the reflection coefficient is the ratio of the complex amplitude of the reflected wave to that of the incident wave. The voltage and current at any point along a transmission line can always be resolved into forward and reflected traveling waves given a specified reference impedance Z 0.
On the other hand, reflection groups are concrete, in the sense that each of its elements is the composite of finitely many geometric reflections about linear hyperplanes in some euclidean space. Technically, a reflection group is a subgroup of a linear group (or various generalizations) generated by orthogonal matrices of determinant -1.
When K is the field of real numbers, a pseudoreflection has matrix form diag(1, ... , 1, -1). A pseudoreflection with such matrix form is called a real reflection.If the space on which this transformation acts admits a symmetric bilinear form so that orthogonality of vectors can be defined, then the transformation is a true reflection.