Search results
Results from the WOW.Com Content Network
The longest alternating subsequence problem has also been studied in the setting of online algorithms, in which the elements of are presented in an online fashion, and a decision maker needs to decide whether to include or exclude each element at the time it is first presented, without any knowledge of the elements that will be presented in the future, and without the possibility of recalling ...
For example, for the array of values [−2, 1, −3, 4, −1, 2, 1, −5, 4], the contiguous subarray with the largest sum is [4, −1, 2, 1], with sum 6. Some properties of this problem are: If the array contains all non-negative numbers, then the problem is trivial; a maximum subarray is the entire array.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us
The longest increasing subsequence problem is closely related to the longest common subsequence problem, which has a quadratic time dynamic programming solution: the longest increasing subsequence of a sequence is the longest common subsequence of and , where is the result of sorting.
Conversely, given a solution to the SubsetSumZero instance, it must contain the −T (since all integers in S are positive), so to get a sum of zero, it must also contain a subset of S with a sum of +T, which is a solution of the SubsetSumPositive instance. The input integers are positive, and T = sum(S)/2.
Structure of arrays (SoA) is a layout separating elements of a record (or 'struct' in the C programming language) into one parallel array per field. [1] The motivation is easier manipulation with packed SIMD instructions in most instruction set architectures, since a single SIMD register can load homogeneous data, possibly transferred by a wide internal datapath (e.g. 128-bit).
A longest common subsequence (LCS) is the longest subsequence common to all sequences in a set of sequences (often just two sequences). It differs from the longest common substring : unlike substrings, subsequences are not required to occupy consecutive positions within the original sequences.
The set ret can be saved efficiently by just storing the index i, which is the last character of the longest common substring (of size z) instead of S[(i-z+1)..i]. Thus all the longest common substrings would be, for each i in ret, S[(ret[i]-z)..(ret[i])]. The following tricks can be used to reduce the memory usage of an implementation: