enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. 600-cell - Wikipedia

    en.wikipedia.org/wiki/600-cell

    The 600-cell is the fifth in the sequence of 6 convex regular 4-polytopes (in order of complexity and size at the same radius). [a] It can be deconstructed into twenty-five overlapping instances of its immediate predecessor the 24-cell, [5] as the 24-cell can be deconstructed into three overlapping instances of its predecessor the tesseract (8-cell), and the 8-cell can be deconstructed into ...

  3. Rectified 600-cell - Wikipedia

    en.wikipedia.org/wiki/Rectified_600-cell

    A related vertex-transitive polytope can be constructed with equal edge lengths removes 120 vertices from the rectified 600-cell, but isn't uniform because it contains square pyramid cells, [1] discovered by George Olshevsky, calling it a swirlprismatodiminished rectified hexacosichoron, with 840 cells (600 square pyramids, 120 pentagonal ...

  4. Euler characteristic - Wikipedia

    en.wikipedia.org/wiki/Euler_characteristic

    This equation, stated by Euler in 1758, [3] is known as Euler's polyhedron formula. [4] It corresponds to the Euler characteristic of the sphere (i.e. χ = 2 {\displaystyle \ \chi =2\ } ), and applies identically to spherical polyhedra .

  5. Table of polyhedron dihedral angles - Wikipedia

    en.wikipedia.org/wiki/Table_of_polyhedron...

    The dihedral angles for the edge-transitive polyhedra are: Picture Name Schläfli ... (4.6. ⁠ 4 / 3 ⁠.6) π − ... (Section 3-7 to 3-9)

  6. List of isotoxal polyhedra and tilings - Wikipedia

    en.wikipedia.org/wiki/List_of_isotoxal_polyhedra...

    The dual of a non-convex polyhedron is also a non-convex polyhedron. [2] ( By contraposition.) There are ten non-convex isotoxal polyhedra based on the quasiregular octahedron, cuboctahedron, and icosidodecahedron: the five (quasiregular) hemipolyhedra based on the quasiregular octahedron, cuboctahedron, and icosidodecahedron, and their five (infinite) duals:

  7. Cross section (geometry) - Wikipedia

    en.wikipedia.org/wiki/Cross_section_(geometry)

    If a plane intersects a solid (a 3-dimensional object), then the region common to the plane and the solid is called a cross-section of the solid. [1] A plane containing a cross-section of the solid may be referred to as a cutting plane. The shape of the cross-section of a solid may depend upon the orientation of the cutting plane to the solid.

  8. 16-cell - Wikipedia

    en.wikipedia.org/wiki/16-cell

    The 16-cell is the second in the sequence of 6 convex regular 4-polytopes (in order of size and complexity). [a]Each of its 4 successor convex regular 4-polytopes can be constructed as the convex hull of a polytope compound of multiple 16-cells: the 16-vertex tesseract as a compound of two 16-cells, the 24-vertex 24-cell as a compound of three 16-cells, the 120-vertex 600-cell as a compound of ...

  9. Ideal polyhedron - Wikipedia

    en.wikipedia.org/wiki/Ideal_polyhedron

    There also exist polyhedra with four edges per vertex that cannot be realized as ideal polyhedra. [6] If a simplicial polyhedron (one with all faces triangles) has all vertex degrees between four and six (inclusive) then it has an ideal representation, but the triakis tetrahedron is simplicial and non-ideal, and the 4-regular non-ideal example ...

  1. Related searches cross section of a polyhedron with one edge of 6 rings and 4 wings of water

    dihedral angle polyhedronpolyhedral angle table
    euler's polyhedron