Search results
Results from the WOW.Com Content Network
The red curve is an epicycloid traced as the small circle (radius r = 1) rolls around the outside of the large circle (radius R = 3).. In geometry, an epicycloid (also called hypercycloid) [1] is a plane curve produced by tracing the path of a chosen point on the circumference of a circle—called an epicycle—which rolls without slipping around a fixed circle.
The cycloid through the origin, generated by a circle of radius r rolling over the x-axis on the positive side (y ≥ 0), consists of the points (x, y), with = () = (), where t is a real parameter corresponding to the angle through which the rolling circle has rotated. For given t, the circle's centre lies at (x, y) = (rt, r).
If the rolling curve is a circle and the fixed curve is a line then the roulette is a trochoid. If, in this case, the point lies on the circle then the roulette is a cycloid . A related concept is a glissette , the curve described by a point attached to a given curve as it slides along two (or more) given curves.
The red path is a hypocycloid traced as the smaller black circle rolls around inside the larger black circle (parameters are R=4.0, r=1.0, and so k=4, giving an astroid). In geometry , a hypocycloid is a special plane curve generated by the trace of a fixed point on a small circle that rolls within a larger circle.
The epitrochoid with R = 3, r = 1 and d = 1/2. In geometry, an epitrochoid (/ ɛ p ɪ ˈ t r ɒ k ɔɪ d / or / ɛ p ɪ ˈ t r oʊ k ɔɪ d /) is a roulette traced by a point attached to a circle of radius r rolling around the outside of a fixed circle of radius R, where the point is at a distance d from the center of the exterior circle.
Hyperbolic geometry is a non-Euclidean geometry where the first four axioms of Euclidean geometry are kept but the fifth axiom, the parallel postulate, is changed.The fifth axiom of hyperbolic geometry says that given a line L and a point P not on that line, there are at least two lines passing through P that are parallel to L. [1]
Let the parameter be the angle by which the tangent point rotates on , and ′ be the angle by which rotates (i.e. by which travels) in the relative system of coordinates. Because there is no slipping, the distances traveled by B {\displaystyle B} and T {\displaystyle T} along their respective circles must be the same, therefore
The Tusi couple (also known as Tusi's mechanism [1] [2] [3]) is a mathematical device in which a small circle rotates inside a larger circle twice the diameter of the smaller circle. Rotations of the circles cause a point on the circumference of the smaller circle to oscillate back and forth in linear motion along a diameter of the larger circle.