Search results
Results from the WOW.Com Content Network
When successive powers of a matrix T become small (that is, when all of the entries of T approach zero, upon raising T to successive powers), the matrix T converges to the zero matrix. A regular splitting of a non-singular matrix A results in a convergent matrix T. A semi-convergent splitting of a matrix A results in a semi-convergent matrix T.
A matrix effect value of less than 100 indicates suppression, while a value larger than 100 is a sign of matrix enhancement. An alternative definition of matrix effect utilizes the formula: M E = 100 ( A ( e x t r a c t ) A ( s t a n d a r d ) ) − 100 {\displaystyle ME=100\left({\frac {A(extract)}{A(standard)}}\right)-100}
Laplacian matrix — a matrix equal to the degree matrix minus the adjacency matrix for a graph, used to find the number of spanning trees in the graph. Seidel adjacency matrix — a matrix similar to the usual adjacency matrix but with −1 for adjacency; +1 for nonadjacency; 0 on the diagonal.
In chemistry a convergent synthesis is a strategy that aims to improve the efficiency of multistep synthesis, most often in organic synthesis. In this type of synthesis several individual pieces of a complex molecule are synthesized in stage one, and then in stage two these pieces are combined to form the final product. [ 1 ]
If an equation can be put into the form f(x) = x, and a solution x is an attractive fixed point of the function f, then one may begin with a point x 1 in the basin of attraction of x, and let x n+1 = f(x n) for n ≥ 1, and the sequence {x n} n ≥ 1 will converge to the solution x.
The most common quasi-Newton algorithms are currently the SR1 formula (for "symmetric rank-one"), the BHHH method, the widespread BFGS method (suggested independently by Broyden, Fletcher, Goldfarb, and Shanno, in 1970), and its low-memory extension L-BFGS. The Broyden's class is a linear combination of the DFP and BFGS methods.
Conjugate gradient, assuming exact arithmetic, converges in at most n steps, where n is the size of the matrix of the system (here n = 2). In mathematics , the conjugate gradient method is an algorithm for the numerical solution of particular systems of linear equations , namely those whose matrix is positive-semidefinite .
Hilbert matrix — example of a matrix which is extremely ill-conditioned (and thus difficult to handle) Wilkinson matrix — example of a symmetric tridiagonal matrix with pairs of nearly, but not exactly, equal eigenvalues; Convergent matrix — square matrix whose successive powers approach the zero matrix; Algorithms for matrix multiplication: