enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Googol - Wikipedia

    en.wikipedia.org/wiki/Googol

    A googol is the large number 10 100 or ten to the power of one hundred. In decimal notation, it is written as the digit 1 followed by one hundred zeros: 10, 000, 000 ...

  3. Factorial - Wikipedia

    en.wikipedia.org/wiki/Factorial

    The special case of Legendre's formula for = gives the number of trailing zeros in the decimal representation of the factorials. [57] According to this formula, the number of zeros can be obtained by subtracting the base-5 digits of from , and dividing the result by four. [58]

  4. Empty product - Wikipedia

    en.wikipedia.org/wiki/Empty_product

    For example, the empty products 0! = 1 (the factorial of zero) and x 0 = 1 shorten Taylor series notation (see zero to the power of zero for a discussion of when x = 0). Likewise, if M is an n × n matrix, then M 0 is the n × n identity matrix , reflecting the fact that applying a linear map zero times has the same effect as applying the ...

  5. Factorion - Wikipedia

    en.wikipedia.org/wiki/Factorion

    A natural number is a sociable factorion if it is a periodic point for , where ⁡ = for a positive integer, and forms a cycle of period . A factorion is a sociable factorion with k = 1 {\displaystyle k=1} , and a amicable factorion is a sociable factorion with k = 2 {\displaystyle k=2} .

  6. Factorial number system - Wikipedia

    en.wikipedia.org/wiki/Factorial_number_system

    The factorial number system is sometimes defined with the 0! place omitted because it is always zero (sequence A007623 in the OEIS). In this article, a factorial number representation will be flagged by a subscript "!". In addition, some examples will have digits delimited by a colon. For example, 3:4:1:0:1:0! stands for

  7. Coin problem - Wikipedia

    en.wikipedia.org/wiki/Coin_problem

    For example, if you had two types of coins valued at 6 cents and 14 cents, the GCD would equal 2, and there would be no way to combine any number of such coins to produce a sum which was an odd number; additionally, even numbers 2, 4, 8, 10, 16 and 22 (less than m=24) could not be formed, either.

  8. Wilkinson's polynomial - Wikipedia

    en.wikipedia.org/wiki/Wilkinson's_polynomial

    Suppose that we perturb a polynomial p(x) = Π (x − α j) with roots α j by adding a small multiple t·c(x) of a polynomial c(x), and ask how this affects the roots α j.To first order, the change in the roots will be controlled by the derivative = ′ ().

  9. Zeros and poles - Wikipedia

    en.wikipedia.org/wiki/Zeros_and_poles

    Because of the order of zeros and poles being defined as a non-negative number n and the symmetry between them, it is often useful to consider a pole of order n as a zero of order –n and a zero of order n as a pole of order –n. In this case a point that is neither a pole nor a zero is viewed as a pole (or zero) of order 0.