Search results
Results from the WOW.Com Content Network
The Gmelin rare earths handbook lists 1522 °C and 1550 °C as two melting points given in the literature, the most recent reference [Handbook on the chemistry and physics of rare earths, vol.12 (1989)] is given with 1529 °C.
Melting point: 1800 K (1500 °C ... Fermium is a synthetic chemical element; ... a new component was isolated emitting high-energy α-particles (7.1 ...
{{Periodic table (melting point)|state=expanded}} or {{Periodic table (melting point)|state=collapsed}}This template's initial visibility currently defaults to autocollapse, meaning that if there is another collapsible item on the page (a navbox, sidebar, or table with the collapsible attribute), it is hidden apart from its title bar; if not, it is fully visible.
In general. Usually parameters reproduce the value, and the template adds the SI unit or additional standard text. While the topic is technical, we can strive to make the result readable text, and even verbose.
However the group 12 metals have much lower melting and boiling points since their full d subshells prevent d–d bonding, which again tends to differentiate them from the accepted transition metals. Mercury has a melting point of −38.83 °C (−37.89 °F) and is a liquid at room temperature.
This small radius and high weight cause it to be expected to have an extremely high density of around 46 g·cm −3, over twice that of osmium, currently the most dense element known, at 22.61 g·cm −3; element 164 should be the second most dense element in the first 172 elements in the periodic table, with only its neighbor unhextrium ...
The melting point (or, rarely, liquefaction point) of a substance is the temperature at which it changes state from solid to liquid. At the melting point the solid and liquid phase exist in equilibrium. The melting point of a substance depends on pressure and is usually specified at a standard pressure such as 1 atmosphere or 100 kPa.
A period 7 element is one of the chemical elements in the seventh row (or period) of the periodic table of the chemical elements.The periodic table is laid out in rows to illustrate recurring (periodic) trends in the chemical behavior of the elements as their atomic number increases: a new row is begun when chemical behavior begins to repeat, meaning that elements with similar behavior fall ...