enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Stress–strain curve - Wikipedia

    en.wikipedia.org/wiki/Stress–strain_curve

    In engineering and materials science, a stress–strain curve for a material gives the relationship between stress and strain.It is obtained by gradually applying load to a test coupon and measuring the deformation, from which the stress and strain can be determined (see tensile testing).

  3. Ramberg–Osgood relationship - Wikipedia

    en.wikipedia.org/wiki/Ramberg–Osgood_relationship

    In the last form of the Ramberg–Osgood model, the hardening behavior of the material depends on the material constants and .Due to the power-law relationship between stress and plastic strain, the Ramberg–Osgood model implies that plastic strain is present even for very low levels of stress.

  4. Ideal gas law - Wikipedia

    en.wikipedia.org/wiki/Ideal_gas_law

    Isotherms of an ideal gas for different temperatures. The curved lines are rectangular hyperbolae of the form y = a/x. They represent the relationship between pressure (on the vertical axis) and volume (on the horizontal axis) for an ideal gas at different temperatures: lines that are farther away from the origin (that is, lines that are nearer to the top right-hand corner of the diagram ...

  5. Kinetic theory of gases - Wikipedia

    en.wikipedia.org/wiki/Kinetic_theory_of_gases

    The mathematical similarities between the expressions for shear viscocity, thermal conductivity and diffusion coefficient of the ideal (dilute) gas is not a coincidence; It is a direct result of the Onsager reciprocal relations (i.e. the detailed balance of the reversible dynamics of the particles), when applied to the convection (matter flow ...

  6. Phase diagram - Wikipedia

    en.wikipedia.org/wiki/Phase_diagram

    In the diagram on the right, the phase boundary between liquid and gas does not continue indefinitely. Instead, it terminates at a point on the phase diagram called the critical point . This reflects the fact that, at extremely high temperatures and pressures, the liquid and gaseous phases become indistinguishable, [ 3 ] in what is known as a ...

  7. Temperature–entropy diagram - Wikipedia

    en.wikipedia.org/wiki/Temperature–entropy_diagram

    Q H = W + Q C = heat exchanged with the hot reservoir. η = W / (Q C + Q H) = thermal efficiency of the cycle If the cycle moves in a clockwise sense, then it is a heat engine that outputs work; if the cycle moves in a counterclockwise sense, it is a heat pump that takes in work and moves heat Q H from the cold reservoir to the hot reservoir.

  8. Paschen's law - Wikipedia

    en.wikipedia.org/wiki/Paschen's_law

    Paschen's law is an equation that gives the breakdown voltage, that is, the voltage necessary to start a discharge or electric arc, between two electrodes in a gas as a function of pressure and gap length. [2] [3] It is named after Friedrich Paschen who discovered it empirically in 1889. [4]

  9. Real gas - Wikipedia

    en.wikipedia.org/wiki/Real_gas

    Where p is the pressure, T is the temperature, R the ideal gas constant, and V m the molar volume. a and b are parameters that are determined empirically for each gas, but are sometimes estimated from their critical temperature (T c) and critical pressure (p c) using these relations: