Search results
Results from the WOW.Com Content Network
In the theory of linear programming, a basic feasible solution (BFS) is a solution with a minimal set of non-zero variables. Geometrically, each BFS corresponds to a vertex of the polyhedron of feasible solutions.
However, some problems have distinct optimal solutions; for example, the problem of finding a feasible solution to a system of linear inequalities is a linear programming problem in which the objective function is the zero function (i.e., the constant function taking the value zero everywhere).
The possible results of Phase I are either that a basic feasible solution is found or that the feasible region is empty. In the latter case the linear program is called infeasible. In the second step, Phase II, the simplex algorithm is applied using the basic feasible solution found in Phase I as a starting point.
With Bland's rule, the simplex algorithm solves feasible linear optimization problems without cycling. [1] [2] [3] The original simplex algorithm starts with an arbitrary basic feasible solution, and then changes the basis in order to decrease the minimization target and find an optimal solution. Usually, the target indeed decreases in every ...
Basic feasible solution, in linear programming; Be File System, the native file system for the Be Operating System; Best-first search, a path finding algorithm; Boot File System, a file system used on UnixWare to store files necessary to its boot process; Breadth-first search, a graph search algorithm
The space of all candidate solutions, before any feasible points have been excluded, is called the feasible region, feasible set, search space, or solution space. [2] This is the set of all possible solutions that satisfy the problem's constraints. Constraint satisfaction is the process of finding a point in the feasible set.
Cutting planes were proposed by Ralph Gomory in the 1950s as a method for solving integer programming and mixed-integer programming problems. However, most experts, including Gomory himself, considered them to be impractical due to numerical instability, as well as ineffective because many rounds of cuts were needed to make progress towards the solution.
The satisfiability problem, also called the feasibility problem, is just the problem of finding any feasible solution at all without regard to objective value. This can be regarded as the special case of mathematical optimization where the objective value is the same for every solution, and thus any solution is optimal.