Search results
Results from the WOW.Com Content Network
The resonant frequency for a driven RLC circuit is the same as a circuit in which there is no damping, hence undamped resonant frequency. The resonant frequency peak amplitude, on the other hand, does depend on the value of the resistor and is described as the damped resonant frequency.
The Q factor is a parameter that describes the resonance behavior of an underdamped harmonic oscillator (resonator). Sinusoidally driven resonators having higher Q factors resonate with greater amplitudes (at the resonant frequency) but have a smaller range of frequencies around that frequency for which they resonate; the range of frequencies for which the oscillator resonates is called the ...
An RLC circuit (or LCR circuit) is an electrical circuit consisting of a resistor, an inductor, and a capacitor, connected in series or in parallel. The RLC part of the name is due to those letters being the usual electrical symbols for resistance , inductance and capacitance respectively.
English: Bode magnitude plot for the voltage across different elements of an RLC series circuit. Natural frequency = 1 rad/s, damping ratio = 0.4 Natural frequency = 1 rad/s, damping ratio = 0.4 Date
The frequency at which this equality holds for the particular circuit is called the resonant frequency. The resonant frequency of the LC circuit is =, where L is the inductance in henries, and C is the capacitance in farads. The angular frequency ω 0 has units of radians per second.
All diagonal elements in a tuned filter are equal to zero because a susceptance vanishes at the resonant frequency. Important merit of the matrix is the fact that it allows to directly compute the frequency response of the equivalent network having the inductively coupled resonant circuits,.
The fundamental passive linear circuit elements are the resistor (R), capacitor (C) and inductor (L). These circuit elements can be combined to form an electrical circuit in four distinct ways: the RC circuit, the RL circuit, the LC circuit and the RLC circuit, with the abbreviations indicating which components are used.
Natural frequency, measured in terms of eigenfrequency, is the rate at which an oscillatory system tends to oscillate in the absence of disturbance. A foundational example pertains to simple harmonic oscillators , such as an idealized spring with no energy loss wherein the system exhibits constant-amplitude oscillations with a constant frequency.