Search results
Results from the WOW.Com Content Network
The resonant frequency for a driven RLC circuit is the same as a circuit in which there is no damping, hence undamped resonant frequency. The resonant frequency peak amplitude, on the other hand, does depend on the value of the resistor and is described as the damped resonant frequency.
The Q factor is a parameter that describes the resonance behavior of an underdamped harmonic oscillator (resonator). Sinusoidally driven resonators having higher Q factors resonate with greater amplitudes (at the resonant frequency) but have a smaller range of frequencies around that frequency for which they resonate; the range of frequencies for which the oscillator resonates is called the ...
An RLC circuit (or LCR circuit) is an electrical circuit consisting of a resistor, an inductor, and a capacitor, connected in series or in parallel. The RLC part of the name is due to those letters being the usual electrical symbols for resistance , inductance and capacitance respectively.
For example, when tuning a radio to a particular station, the LC circuits are set at resonance for that particular carrier frequency. A series resonant circuit provides voltage magnification. A parallel resonant circuit provides current magnification. A parallel resonant circuit can be used as load impedance in output circuits of RF amplifiers.
Such resonant circuits are also called RLC circuits after the circuit symbols for the components. A distributed-parameter resonator has capacitance, inductance, and resistance that cannot be isolated into separate lumped capacitors, inductors, or resistors. An example of this, much used in filtering, is the helical resonator.
So for the same RLC circuit but with the voltage across the inductor as the output, the resonant frequency is now larger than the natural frequency, though it still tends towards the natural frequency as the damping ratio goes to zero. That the same circuit can have different resonant frequencies for different choices of output is not ...
In accordance with new definition (6), the value of the inductive coupling coefficient of resonant LC-circuits is expressed by formula (4) as before. It has a positive value when L m > 0 {\displaystyle L_{m}>0} and a negative value when L m < 0. {\displaystyle L_{m}<0.}
The fundamental passive linear circuit elements are the resistor (R), capacitor (C) and inductor (L). These circuit elements can be combined to form an electrical circuit in four distinct ways: the RC circuit, the RL circuit, the LC circuit and the RLC circuit, with the abbreviations indicating which components are used.