enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Pivot element - Wikipedia

    en.wikipedia.org/wiki/Pivot_element

    The pivot or pivot element is the element of a matrix, or an array, which is selected first by an algorithm (e.g. Gaussian elimination, simplex algorithm, etc.), to do certain calculations. In the case of matrix algorithms, a pivot entry is usually required to be at least distinct from zero, and often distant from it; in this case finding this ...

  3. Row echelon form - Wikipedia

    en.wikipedia.org/wiki/Row_echelon_form

    A matrix is in row echelon form if . All rows having only zero entries are at the bottom. [1]The leading entry (that is, the left-most nonzero entry) of every nonzero row, called the pivot, is on the right of the leading entry of every row above.

  4. Gaussian elimination - Wikipedia

    en.wikipedia.org/wiki/Gaussian_elimination

    For each row in a matrix, if the row does not consist of only zeros, then the leftmost nonzero entry is called the leading coefficient (or pivot) of that row. So if two leading coefficients are in the same column, then a row operation of type 3 could be used to make one of those coefficients zero. Then by using the row swapping operation, one ...

  5. Smith normal form - Wikipedia

    en.wikipedia.org/wiki/Smith_normal_form

    In mathematics, the Smith normal form (sometimes abbreviated SNF [1]) is a normal form that can be defined for any matrix (not necessarily square) with entries in a principal ideal domain (PID). The Smith normal form of a matrix is diagonal, and can be obtained from the original matrix by multiplying on the left and right by invertible square ...

  6. LU decomposition - Wikipedia

    en.wikipedia.org/wiki/LU_decomposition

    The second equation follows from the fact that the determinant of a triangular matrix is simply the product of its diagonal entries, and that the determinant of a permutation matrix is equal to (−1) S where S is the number of row exchanges in the decomposition.

  7. Invertible matrix - Wikipedia

    en.wikipedia.org/wiki/Invertible_matrix

    Matrix inversion is the process of finding the matrix which when multiplied by the original matrix gives the identity matrix. [2] Over a field, a square matrix that is not invertible is called singular or degenerate. A square matrix with entries in a field is singular if and only if its determinant is zero.

  8. Cholesky decomposition - Wikipedia

    en.wikipedia.org/wiki/Cholesky_decomposition

    In linear algebra, the Cholesky decomposition or Cholesky factorization (pronounced / ʃ ə ˈ l ɛ s k i / shə-LES-kee) is a decomposition of a Hermitian, positive-definite matrix into the product of a lower triangular matrix and its conjugate transpose, which is useful for efficient numerical solutions, e.g., Monte Carlo simulations.

  9. Partial inverse of a matrix - Wikipedia

    en.wikipedia.org/wiki/Partial_inverse_of_a_matrix

    In linear algebra and statistics, the partial inverse of a matrix is an operation related to Gaussian elimination which has applications in numerical analysis and statistics. It is also known by various authors as the principal pivot transform, or as the sweep, gyration, or exchange operator.