Search results
Results from the WOW.Com Content Network
Left: A continuous function (top) and its Fourier transform (bottom). Center-left: Periodic summation of the original function (top). Fourier transform (bottom) is zero except at discrete points. The inverse transform is a sum of sinusoids called Fourier series. Center-right: Original function is discretized (multiplied by a Dirac comb) (top).
The result of the series is also a function of the discrete variable, i.e. a discrete sequence. A Fourier series, by nature, has a discrete set of components with a discrete set of coefficients, also a discrete sequence. So a DFS is a representation of one sequence in terms of another sequence.
In signal processing, multidimensional discrete convolution refers to the mathematical operation between two functions f and g on an n-dimensional lattice that produces a third function, also of n-dimensions. Multidimensional discrete convolution is the discrete analog of the multidimensional convolution of functions on Euclidean space.
The delta function was introduced by physicist Paul Dirac, and has since been applied routinely in physics and engineering to model point masses and instantaneous impulses. It is called the delta function because it is a continuous analogue of the Kronecker delta function, which is usually defined on a discrete domain and takes values 0 and 1.
In mathematics, the discrete-time Fourier transform (DTFT) is a form of Fourier analysis that is applicable to a sequence of discrete values. The DTFT is often used to analyze samples of a continuous function. The term discrete-time refers to
In mathematics, the discrete sine transform (DST) is a Fourier-related transform similar to the discrete Fourier transform (DFT), but using a purely real matrix.It is equivalent to the imaginary parts of a DFT of roughly twice the length, operating on real data with odd symmetry (since the Fourier transform of a real and odd function is imaginary and odd), where in some variants the input and ...
An important example of the unilateral Z-transform is the probability-generating function, where the component [] is the probability that a discrete random variable takes the value. The properties of Z-transforms (listed in § Properties ) have useful interpretations in the context of probability theory.
The formulas provided at § Examples of window functions produce discrete sequences, as if a continuous window function has been "sampled". (See an example at Kaiser window.) Window sequences for spectral analysis are either symmetric or 1-sample short of symmetric (called periodic, [4] [5] DFT-even, or DFT-symmetric [2]: p.52 ). For instance ...