Search results
Results from the WOW.Com Content Network
The Collatz conjecture is: This process will eventually reach the number 1, regardless of which positive integer is chosen initially. That is, for each , there is some with . If the conjecture is false, it can only be because there is some starting number which gives rise to a sequence that does not contain 1.
Quadratic formula. The roots of the quadratic function y = 1 2 x2 − 3x + 5 2 are the places where the graph intersects the x -axis, the values x = 1 and x = 5. They can be found via the quadratic formula. In elementary algebra, the quadratic formula is a closed-form expression describing the solutions of a quadratic equation.
Pauli matrices. Wolfgang Pauli (1900–1958), c. 1924. Pauli received the Nobel Prize in physics in 1945, nominated by Albert Einstein, for the Pauli exclusion principle. In mathematical physics and mathematics, the Pauli matrices are a set of three 2 × 2 complex matrices that are traceless, Hermitian, involutory and unitary.
Solving an equation symbolically means that expressions can be used for representing the solutions. For example, the equation x + y = 2x – 1 is solved for the unknown x by the expression x = y + 1, because substituting y + 1 for x in the equation results in (y + 1) + y = 2 (y + 1) – 1, a true statement. It is also possible to take the ...
Complex conjugate. Geometric representation (Argand diagram) of and its conjugate in the complex plane. The complex conjugate is found by reflecting across the real axis. In mathematics, the complex conjugate of a complex number is the number with an equal real part and an imaginary part equal in magnitude but opposite in sign.
Here the function is and therefore the three real roots are 2, −1 and −4. In algebra, a cubic equation in one variable is an equation of the form in which a is not zero. The solutions of this equation are called roots of the cubic function defined by the left-hand side of the equation. If all of the coefficients a, b, c, and d of the cubic ...
v. t. e. Euler's formula, named after Leonhard Euler, is a mathematical formula in complex analysis that establishes the fundamental relationship between the trigonometric functions and the complex exponential function. Euler's formula states that, for any real number x, one has where e is the base of the natural logarithm, i is the imaginary ...
Algebra. Elementary algebra studies which values solve equations formed using arithmetical operations. Abstract algebra studies algebraic structures, such as the ring of integers given by the set of integers together with operations of addition ( ) and multiplication ( ). Algebra is the branch of mathematics that studies certain abstract ...