Search results
Results from the WOW.Com Content Network
The Rule 110 cellular automaton (often called simply Rule 110) [a] is an elementary cellular automaton with interesting behavior on the boundary between stability and chaos. In this respect, it is similar to Conway's Game of Life .
A special class of cellular automata are totalistic cellular automata. The state of each cell in a totalistic cellular automaton is represented by a number (usually an integer value drawn from a finite set), and the value of a cell at time t depends only on the sum of the values of the cells in its neighborhood (possibly including the cell ...
Initially, much of the cell-space, the universe of the cellular automaton, is "blank", consisting of cells in the ground state U. When given an input excitation from a neighboring ordinary- or special transmission state, the cell in the ground state becomes "sensitised", transitioning through a series of states before finally "resting" at a ...
In mathematics and computability theory, an elementary cellular automaton is a one-dimensional cellular automaton where there are two possible states (labeled 0 and 1) and the rule to determine the state of a cell in the next generation depends only on the current state of the cell and its two immediate neighbors.
If we view the two states as Boolean values, this correspondence between ordinary and second-order automaton can be described simply: the state of a cell of the second-order automaton at time t + 1 is the exclusive or of its state at time t − 1 with the state that the ordinary cellular automaton rule would compute for it. [4]
In Conway's Game of Life (and related cellular automata), the speed of light is a propagation rate across the grid of exactly one step (either horizontally, vertically or diagonally) per generation. In a single generation, a cell can only influence its nearest neighbours , and so the speed of light (by analogy with the speed of light in physics ...
The state of every cell in the model is updated together, before any of the new states influence other cells. In contrast, an asynchronous cellular automaton is able to update individual cells independently, in such a way that the new state of a cell affects the calculation of states in neighbouring cells.
In a cellular automaton, an oscillator is a pattern that returns to its original state, in the same orientation and position, after a finite number of generations. Thus the evolution of such a pattern repeats itself indefinitely.