enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Tetrahedron - Wikipedia

    en.wikipedia.org/wiki/Tetrahedron

    The volume of a tetrahedron can be obtained in many ways. It can be given by using the formula of the pyramid's volume: =. where is the base' area and is the height from the base to the apex. This applies for each of the four choices of the base, so the distances from the apices to the opposite faces are inversely proportional to the areas of ...

  3. List of formulas in elementary geometry - Wikipedia

    en.wikipedia.org/wiki/List_of_formulas_in...

    Illustration of the shapes' equation terms. ... is the base's area and is the pyramid's height; Tetrahedron – , where is the ... List of volume formulas ...

  4. Trirectangular tetrahedron - Wikipedia

    en.wikipedia.org/wiki/Trirectangular_tetrahedron

    If the legs have lengths a, b, c, then the trirectangular tetrahedron has the volume [2] =. The altitude h satisfies [3] = + +. The area of the base is given by [4] =. The solid angle at the right-angled vertex, from which the opposite face (the base) subtends an octant, has measure π /2 steradians, one eighth of the surface area of a unit sphere.

  5. Simplex - Wikipedia

    en.wikipedia.org/wiki/Simplex

    Another common way of computing the volume of the simplex is via the Cayley–Menger determinant, which works even when the n-simplex's vertices are in a Euclidean space with more than n dimensions. [11] Without the 1/n! it is the formula for the volume of an n-parallelotope.

  6. Cayley–Menger determinant - Wikipedia

    en.wikipedia.org/wiki/Cayley–Menger_determinant

    As a result, the equation above presents the content of a 3-simplex, which is the volume of a tetrahedron where the edge between vertices and has length . [ 5 ] Proof

  7. Parallelepiped - Wikipedia

    en.wikipedia.org/wiki/Parallelepiped

    The volume of any tetrahedron that shares three converging edges of a parallelepiped is equal to one sixth of the volume of that parallelepiped (see proof). Surface area [ edit ]

  8. Truncated tetrahedron - Wikipedia

    en.wikipedia.org/wiki/Truncated_tetrahedron

    Given the edge length .The surface area of a truncated tetrahedron is the sum of 4 regular hexagons and 4 equilateral triangles' area, and its volume is: [2] =, =.. The dihedral angle of a truncated tetrahedron between triangle-to-hexagon is approximately 109.47°, and that between adjacent hexagonal faces is approximately 70.53°.

  9. Trigonometry of a tetrahedron - Wikipedia

    en.wikipedia.org/wiki/Trigonometry_of_a_tetrahedron

    The 12 face angles - there are three of them for each of the four faces of the tetrahedron. The 6 dihedral angles - associated to the six edges of the tetrahedron, since any two faces of the tetrahedron are connected by an edge. The 4 solid angles - associated to each point of the tetrahedron.