Search results
Results from the WOW.Com Content Network
In geometry, a bigon, [1] digon, or a 2-gon, is a polygon with two sides and two vertices.Its construction is degenerate in a Euclidean plane because either the two sides would coincide or one or both would have to be curved; however, it can be easily visualised in elliptic space.
If a geometric shape can be used as a prototile to create a tessellation, the shape is said to tessellate or to tile the plane. The Conway criterion is a sufficient, but not necessary, set of rules for deciding whether a given shape tiles the plane periodically without reflections: some tiles fail the criterion, but still tile the plane. [19]
They can be read right side up or upside down, or both. Rotation ambigrams are the most common type of ambigrams for good reason. When a word is turned upside down, the top halves of the letters turn into the bottom halves. And because our eyes pay attention primarily to the top halves of letters when we read, that means that you can ...
Edge, a 1-dimensional element; Face, a 2-dimensional element; Cell, a 3-dimensional element; Hypercell or Teron, a 4-dimensional element; Facet, an (n-1)-dimensional element; Ridge, an (n-2)-dimensional element; Peak, an (n-3)-dimensional element; For example, in a polyhedron (3-dimensional polytope), a face is a facet, an edge is a ridge, and ...
This is a list of two-dimensional geometric shapes in Euclidean and other geometries. For mathematical objects in more dimensions, see list of mathematical shapes. For a broader scope, see list of shapes.
In geometry, a honeycomb is a space filling or close packing of polyhedral or higher-dimensional cells, so that there are no gaps. It is an example of the more general mathematical tiling or tessellation in any number of dimensions. Its dimension can be clarified as n-honeycomb for a honeycomb of n-dimensional space.
Image credits: Gregorsamsasneighbor #5. In high school, one of my guy friends who liked me baked me a big plate of chocolate chip cookies and randomly gave it to me one day.
It is one of two monohedral pentagonal tilings that, when the tiles have unit area, minimizes the perimeter of the tiles. The other is also a tiling by circumscribed pentagons with two right angles and three 120° angles, but with the two right angles adjacent; there are also infinitely many tilings formed by combining both kinds of pentagon. [15]