enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Double pendulum - Wikipedia

    en.wikipedia.org/wiki/Double_pendulum

    A double pendulum consists of two pendulums attached end to end.. In physics and mathematics, in the area of dynamical systems, a double pendulum, also known as a chaotic pendulum, is a pendulum with another pendulum attached to its end, forming a simple physical system that exhibits rich dynamic behavior with a strong sensitivity to initial conditions. [1]

  3. Harmonograph - Wikipedia

    en.wikipedia.org/wiki/Harmonograph

    One pendulum moves the pen back and forth along one axis, and the other pendulum moves the drawing surface back and forth along a perpendicular axis. By varying the frequency and phase of the pendulums relative to one another, different patterns are created.

  4. Generalized coordinates - Wikipedia

    en.wikipedia.org/wiki/Generalized_coordinates

    An example of a generalized coordinate would be to describe the position of a pendulum using the angle of the pendulum relative to vertical, rather than by the x and y position of the pendulum. Although there may be many possible choices for generalized coordinates for a physical system, they are generally selected to simplify calculations ...

  5. Pendulum (mechanics) - Wikipedia

    en.wikipedia.org/wiki/Pendulum_(mechanics)

    A pendulum is a body suspended from a fixed support such that it freely swings back and forth under the influence of gravity. When a pendulum is displaced sideways from its resting, equilibrium position, it is subject to a restoring force due to gravity that will accelerate it back towards the equilibrium position.

  6. Phase portrait - Wikipedia

    en.wikipedia.org/wiki/Phase_portrait

    Simple pendulum, see picture (right). Simple harmonic oscillator where the phase portrait is made up of ellipses centred at the origin, which is a fixed point. Damped harmonic motion , see animation (right).

  7. Swinging Atwood's machine - Wikipedia

    en.wikipedia.org/wiki/Swinging_Atwood's_Machine

    Since the system is invariant under time reversal and translation, it is equivalent to say that the pendulum starts at the origin and is fired outwards: [1] r ( 0 ) = 0 {\displaystyle r(0)=0} The region close to the pivot is singular, since r {\displaystyle r} is close to zero and the equations of motion require dividing by r {\displaystyle r} .

  8. Duffing equation - Wikipedia

    en.wikipedia.org/wiki/Duffing_equation

    The equation describes the motion of a damped oscillator with a more complex potential than in simple harmonic motion (which corresponds to the case = =); in physical terms, it models, for example, an elastic pendulum whose spring's stiffness does not exactly obey Hooke's law.

  9. Tent map - Wikipedia

    en.wikipedia.org/wiki/Tent_map

    Graph of tent map function Example of iterating the initial condition x 0 = 0.4 over the tent map with μ = 1.9.. In mathematics, the tent map with parameter μ is the real-valued function f μ defined by