Search results
Results from the WOW.Com Content Network
The MPT is a mean-variance theory, and it compares the expected (mean) return of a portfolio with the standard deviation of the same portfolio. The image shows expected return on the vertical axis, and the standard deviation on the horizontal axis (volatility). Volatility is described by standard deviation and it serves as a measure of risk. [7 ...
The expected return (or expected gain) on a financial investment is the expected value of its return (of the profit on the investment). It is a measure of the center of the distribution of the random variable that is the return. [1] It is calculated by using the following formula: [] = = where
Merton's portfolio problem is a problem in continuous-time finance and in particular intertemporal portfolio choice. An investor must choose how much to consume and must allocate their wealth between stocks and a risk-free asset so as to maximize expected utility .
R M = return on the market portfolio σ M = standard deviation of the market portfolio σ P = standard deviation of portfolio (R M – I RF)/σ M is the slope of CML. (R M – I RF) is a measure of the risk premium, or the reward for holding risky portfolio instead of risk-free portfolio. σ M is the risk of the market portfolio. Therefore, the ...
An example capital allocation line. As illustrated by the article, the slope dictates the amount of return that comes with a certain level of risk. Capital allocation line (CAL) is a graph created by investors to measure the risk of risky and risk-free assets. The graph displays the return to be made by taking on a certain level of risk.
If Portfolio A has an expected return of 10% and standard deviation of 15%, while portfolio B has a mean return of 8% and a standard deviation of 5%, and the investor is willing to invest in a portfolio that maximizes the probability of a return no lower than 0%: SFRatio(A) = 10 − 0 / 15 = 0.67, SFRatio(B) = 8 − 0 / 5 = 1.6
The rate of return on a portfolio can be calculated indirectly as the weighted average rate of return on the various assets within the portfolio. [3] The weights are proportional to the value of the assets within the portfolio, to take into account what portion of the portfolio each individual return represents in calculating the contribution of that asset to the return on the portfolio.
Portfolio optimization is the process of selecting an optimal portfolio (asset distribution), out of a set of considered portfolios, according to some objective.The objective typically maximizes factors such as expected return, and minimizes costs like financial risk, resulting in a multi-objective optimization problem.