Search results
Results from the WOW.Com Content Network
In algebra, a Landau-Mignotte bound (sometimes only referred to as Mignotte's bound [1]) is one of a family of inequalities concerning a univariate integer polynomial f(x) and one of its factors h(x).
Here the Bombieri inequality is the left hand side of the above statement, while the right side means that the Bombieri norm is an algebra norm. Giving the left hand side is meaningless without that constraint, because in this case, we can achieve the same result with any norm by multiplying the norm by a well chosen factor.
One of the corollaries of the Remez inequality is the Pólya inequality, which was proved by George Pólya (Pólya 1928), and states that the Lebesgue measure of a sub-level set of a polynomial p of degree n is bounded in terms of the leading coefficient LC(p) as follows:
The feasible regions of linear programming are defined by a set of inequalities. In mathematics, an inequality is a relation which makes a non-equal comparison between two numbers or other mathematical expressions. [1] It is used most often to compare two numbers on the number line by their size.
A binomial is a polynomial which is the sum of two monomials. A binomial in a single indeterminate (also known as a univariate binomial) can be written in the form , where a and b are numbers, and m and n are distinct non-negative integers and x is a symbol which is called an indeterminate or, for historical reasons, a variable.
In mathematics, the Markov brothers' inequality is an inequality, proved in the 1890s by brothers Andrey Markov and Vladimir Markov, two Russian mathematicians. This inequality bounds the maximum of the derivatives of a polynomial on an interval in terms of the maximum of the polynomial. [ 1 ]
Polynomials of degree one, two or three are respectively linear polynomials, quadratic polynomials and cubic polynomials. [8] For higher degrees, the specific names are not commonly used, although quartic polynomial (for degree four) and quintic polynomial (for degree five) are sometimes used. The names for the degrees may be applied to the ...
Here, the interpolant is not a polynomial but a spline: a chain of several polynomials of a lower degree. Interpolation of periodic functions by harmonic functions is accomplished by Fourier transform. This can be seen as a form of polynomial interpolation with harmonic base functions, see trigonometric interpolation and trigonometric polynomial.