Search results
Results from the WOW.Com Content Network
The theorem is frequently referred to as the division algorithm (although it is a theorem and not an algorithm), because its proof as given below lends itself to a simple division algorithm for computing q and r (see the section Proof for more). Division is not defined in the case where b = 0; see division by zero.
Although a later proof was found using algebraic geometry, no direct algebraic proof is known. The fundamental theorem of algebra is a corollary of Hopf's theorem. Dropping the requirement of commutativity, Hopf generalized his result: Any finite-dimensional real division algebra must have dimension a power of 2.
Similarly, right division of b by a (written b / a) is the solution y to the equation y ∗ a = b. Division in this sense does not require ∗ to have any particular properties (such as commutativity, associativity, or an identity element). A magma for which both a \ b and b / a exist and are unique for all a and all b (the Latin square ...
Your insurance ID card. This document acts as proof of insurance. It must be provided at the request of a police officer or when you are involved in an accident in many states. Keep this card as ...
Yes, North Carolina accepts electronic ID cards as valid proof of insurance. Some car insurance providers, like Allstate and Geico , allow you to download your insurance card to your phone’s ...
As a consequence, the only commutative division algebras are R and C. Also note that H is not a C-algebra. If it were, then the center of H has to contain C, but the center of H is R. This theorem is closely related to Hurwitz's theorem, which states that the only real normed division algebras are R, C, H, and the (non-associative) algebra O.
Ruffini's rule can be used when one needs the quotient of a polynomial P by a binomial of the form . (When one needs only the remainder, the polynomial remainder theorem provides a simpler method.) A typical example, where one needs the quotient, is the factorization of a polynomial p ( x ) {\displaystyle p(x)} for which one knows a root r :
Kirby–Paris theorem (proof theory) Kirchberger's theorem (discrete geometry) Kirchhoff's theorem (graph theory) Kirszbraun theorem (Lipschitz continuity) Kleene fixed-point theorem (order theory) Kleene's recursion theorem (recursion theory) Knaster–Tarski theorem (order theory) Kneser's theorem (combinatorics) Kneser's theorem ...