Search results
Results from the WOW.Com Content Network
Steady-state free precession (SSFP) imaging is a magnetic resonance imaging (MRI) sequence which uses steady states of magnetizations. In general, SSFP MRI sequences are based on a (low flip angle) gradient echo MRI sequence with a short repetition time which in its generic form has been described as the FLASH MRI technique.
The term K can be understood by examining the ratio by which it is defined: the precession frequency of a spin about B effective is proportional to the strength of the effective field, and the angle of the field, phi, must change slower than the precession frequency so that the spin can “track” the effective field as it changes direction ...
Modern 3 Tesla clinical MRI scanner.. Magnetic resonance imaging (MRI) is a medical imaging technique mostly used in radiology and nuclear medicine in order to investigate the anatomy and physiology of the body, and to detect pathologies including tumors, inflammation, neurological conditions such as stroke, disorders of muscles and joints, and abnormalities in the heart and blood vessels ...
It is the generic form of steady-state free precession imaging. Different manufacturers of MRI equipment use different names for this experiment. Siemens uses the name FLASH, General Electric used the name SPGR (Spoiled Gradient Echo), and Philips uses the name CE-FFE-T1 (Contrast-Enhanced Fast Field Echo) or T1-FFE.
MRI Scanner Mark One. The first MRI scanner to be built and used, in Aberdeen Royal Infirmary in Scotland. The history of magnetic resonance imaging (MRI) includes the work of many researchers who contributed to the discovery of nuclear magnetic resonance (NMR) and described the underlying physics of magnetic resonance imaging, starting early in the twentieth century.
Modern nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) make use of this effect. The NMR signal observed following an initial excitation pulse decays with time due to both spin relaxation and any inhomogeneous effects which cause spins in the sample to precess at different rates. The first of these, relaxation, leads to an ...
The versatile nature of MRI is due to this capability of producing contrast related to the structure of tissues at the microscopic level. In a typical -weighted image, water molecules in a sample are excited with the imposition of a strong magnetic field. This causes many of the protons in water molecules to precess simultaneously, producing ...
The LLG equation describes a more general scenario of magnetization dynamics beyond the simple Larmor precession. In particular, the effective field driving the precessional motion of M is not restricted to real magnetic fields; it incorporates a wide range of mechanisms including magnetic anisotropy, exchange interaction, and so on.