Search results
Results from the WOW.Com Content Network
Note the minus sign in the equation, the drag force points in the opposite direction to the relative velocity: drag opposes the motion. Stokes' law makes the following assumptions for the behavior of a particle in a fluid: Laminar flow; No inertial effects (zero Reynolds number) Spherical particles; Homogeneous (uniform in composition) material
The shear viscosity (or viscosity, in short) of a fluid is a material property that describes the friction between internal neighboring fluid surfaces (or sheets) flowing with different fluid velocities. This friction is the effect of (linear) momentum exchange caused by molecules with sufficient energy to move (or "to jump") between these ...
Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.
Viscosity is a measure of a fluid's rate-dependent resistance to a change in shape or to movement of its neighboring portions relative to one another. [1] For liquids, it corresponds to the informal concept of thickness; for example, syrup has a higher viscosity than water. [2]
The equation above can be used to plot the Fanno line, which represents a locus of states for given Fanno flow conditions on an H-ΔS diagram. In the diagram, the Fanno line reaches maximum entropy at H = 0.833 and the flow is choked. According to the Second law of thermodynamics, entropy must always increase for Fanno flow. This means that a ...
The equation is named after Henry Darcy and Julius Weisbach. Currently, there is no formula more accurate or universally applicable than the Darcy-Weisbach supplemented by the Moody diagram or Colebrook equation. [1] The Darcy–Weisbach equation contains a dimensionless friction factor, known as the Darcy friction factor. This is also ...
Churchill equation [24] (1977) is the only equation that can be evaluated for very slow flow (Reynolds number < 1), but the Cheng (2008), [25] and Bellos et al. (2018) [8] equations also return an approximately correct value for friction factor in the laminar flow region (Reynolds number < 2300). All of the others are for transitional and ...
Stokes' formula can refer to: Stokes' law for friction force in a viscous fluid. Stokes' law (sound attenuation) law describing attenuation of sound in Newtonian liquids. Stokes' theorem on the integration of differential forms. Stokes' formula (gravity) a formula in geodesy