Search results
Results from the WOW.Com Content Network
2005 DARPA Grand Challenge winner Stanley performed SLAM as part of its autonomous driving system. A map generated by a SLAM Robot. Simultaneous localization and mapping (SLAM) is the computational problem of constructing or updating a map of an unknown environment while simultaneously keeping track of an agent's location within it.
This is a list of simultaneous localization and mapping (SLAM) methods. The KITTI Vision Benchmark Suite website has a more comprehensive list of Visual SLAM methods.
Map learning cannot be separated from the localization process, and a difficulty arises when errors in localization are incorporated into the map. This problem is commonly referred to as Simultaneous localization and mapping (SLAM).
Robot localization denotes the robot's ability to establish its own position and orientation within the frame of reference. Path planning is effectively an extension of localization, in that it requires the determination of the robot's current position and a position of a goal location, both within the same frame of reference or coordinates.
In autonomous robotics, Monte Carlo localization can determine the position of a robot. It is often applied to stochastic filters such as the Kalman filter or particle filter that forms the heart of the SLAM (simultaneous localization and mapping) algorithm.
slam toolbox [80] provides full 2D SLAM and localization system. gmapping [81] provides a wrapper for OpenSlam's Gmapping algorithm for simultaneous localization and mapping. cartographer [82] provides real time 2D and 3D SLAM algorithms developed at Google. amcl [83] provides an implementation of adaptive Monte-Carlo localization.
Simultaneous localization and mapping ... Using a classical evolutionary algorithm where the answer of the optimisation problem is the best individual, the genome of ...
Occupancy Grid Mapping refers to a family of computer algorithms in probabilistic robotics for mobile robots which address the problem of generating maps from noisy and uncertain sensor measurement data, with the assumption that the robot pose is known. Occupancy grids were first proposed by H. Moravec and A. Elfes in 1985.