Search results
Results from the WOW.Com Content Network
In fact computability can itself be defined via the lambda calculus: a function F: N → N of natural numbers is a computable function if and only if there exists a lambda expression f such that for every pair of x, y in N, F(x)=y if and only if f x = β y, where x and y are the Church numerals corresponding to x and y, respectively and = β ...
For example, a list of three elements x, y and z can be encoded by a higher-order function that when applied to a combinator c and a value n returns c x (c y (c z n)). Equivalently, it is an application of the chain of functional compositions of partial applications, (c x ∘ c y ∘ c z) n.
Here F X is the cumulative distribution function of X, f X is the corresponding probability density function, Q X (p) is the corresponding inverse cumulative distribution function also called the quantile function, [2] and the integrals are of the Riemann–Stieltjes kind.
Cumulative distribution function for the exponential distribution Cumulative distribution function for the normal distribution. In probability theory and statistics, the cumulative distribution function (CDF) of a real-valued random variable, or just distribution function of , evaluated at , is the probability that will take a value less than or equal to .
The purpose of β-reduction is to calculate a value. A value in lambda calculus is a function. So β-reduction continues until the expression looks like a function abstraction. A lambda expression that cannot be reduced further, by either β-redex, or η-redex is in normal form. Note that alpha-conversion may convert functions.
The Tukey lambda distribution has a simple, closed form for the CDF and / or PDF only for a few exceptional values of the shape parameter, for example: λ ∈ {2, 1, 1 / 2 , 0 } (see uniform distribution [ cases λ = 1 and λ = 2 ] and the logistic distribution [ case λ = 0 ].
The probability density function of the Erlang distribution is (;,) = ()!,,The parameter k is called the shape parameter, and the parameter is called the rate parameter.. An alternative, but equivalent, parametrization uses the scale parameter , which is the reciprocal of the rate parameter (i.e., = /):
From the relations between a beta and an F-distribution, Wilks' lambda can be related to the F-distribution when one of the parameters of the Wilks lambda distribution is either 1 or 2, e.g., [1] 1 − Λ ( p , m , 1 ) Λ ( p , m , 1 ) ∼ p m − p + 1 F p , m − p + 1 , {\displaystyle {\frac {1-\Lambda (p,m,1)}{\Lambda (p,m,1)}}\sim {\frac ...