Search results
Results from the WOW.Com Content Network
A resistor–capacitor circuit (RC circuit), or RC filter or RC network, is an electric circuit composed of resistors and capacitors. It may be driven by a voltage or current source and these will produce different responses. A first order RC circuit is composed of one resistor and one capacitor and is the simplest type of RC circuit.
The RC time constant, denoted τ (lowercase tau), the time constant (in seconds) of a resistor–capacitor circuit (RC circuit), is equal to the product of the circuit resistance (in ohms) and the circuit capacitance (in farads):
A simple electric circuit made up of a voltage source and a resistor. Here, =, according to Ohm's law. An electrical network is an interconnection of electrical components (e.g., batteries, resistors, inductors, capacitors, switches, transistors) or a model of such an interconnection, consisting of electrical elements (e.g., voltage sources, current sources, resistances, inductances ...
Another common design is the "Twin-T" oscillator as it uses two "T" RC circuits operated in parallel. One circuit is an R-C-R "T" which acts as a low-pass filter. The second circuit is a C-R-C "T" which operates as a high-pass filter. Together, these circuits form a bridge which is tuned at the desired frequency of oscillation.
Figure 1: Schematic of an electrical circuit illustrating current division. Notation R T refers to the total resistance of the circuit to the right of resistor R X.. In electronics, a current divider is a simple linear circuit that produces an output current (I X) that is a fraction of its input current (I T).
Angle notation can easily describe leading and lagging current: . [1] In this equation, the value of theta is the important factor for leading and lagging current. As mentioned in the introduction above, leading or lagging current represents a time shift between the current and voltage sine curves, which is represented by the angle by which the curve is ahead or behind of where it would be ...
The two resistors R and three capacitors C form the RC phase-shift network which provides feedback from collector to base of the transistor. Resistor R b provides base bias current. Resistor R c is the collector load resistor for the collector current. Resistor R s isolates the circuit from the external load. [3]
A circuit diagram representing an analog circuit, in this case a simple amplifier. Analog electronic circuits are those in which current or voltage may vary continuously with time to correspond to the information being represented. A simple schematic showing wires, a resistor, and a battery