Search results
Results from the WOW.Com Content Network
The quality and duration of simulated FDM solution depends on the discretization equation selection and the step sizes (time and space steps). The data quality and simulation duration increase significantly with smaller step size. [2] Therefore, a reasonable balance between data quality and simulation duration is necessary for practical usage.
Typically data is discretized into partitions of K equal lengths/width (equal intervals) or K% of the total data (equal frequencies). [1] Mechanisms for discretizing continuous data include Fayyad & Irani's MDL method, [2] which uses mutual information to recursively define the best bins, CAIM, CACC, Ameva, and many others [3]
In applied mathematics, the non-uniform discrete Fourier transform (NUDFT or NDFT) of a signal is a type of Fourier transform, related to a discrete Fourier transform or discrete-time Fourier transform, but in which the input signal is not sampled at equally spaced points or frequencies (or both).
Discretization is also related to discrete mathematics, and is an important component of granular computing. In this context, discretization may also refer to modification of variable or category granularity, as when multiple discrete variables are aggregated or multiple discrete categories fused.
In computational physics, the term advection scheme refers to a class of numerical discretization methods for solving hyperbolic partial differential equations. In the so-called upwind schemes typically, the so-called upstream variables are used to calculate the derivatives in a flow field. That is, derivatives are estimated using a set of data ...
In an analogous way, one can obtain finite difference approximations to higher order derivatives and differential operators. For example, by using the above central difference formula for f ′(x + h / 2 ) and f ′(x − h / 2 ) and applying a central difference formula for the derivative of f ′ at x, we obtain the central difference approximation of the second derivative of f:
In discrete modelling, discrete formulae are fit to data. A common method in this form of modelling is to use recurrence relation. Discretization concerns the process of transferring continuous models and equations into discrete counterparts, often for the purposes of making calculations easier by using approximations.
The Crank–Nicolson stencil for a 1D problem. The Crank–Nicolson method is based on the trapezoidal rule, giving second-order convergence in time.For linear equations, the trapezoidal rule is equivalent to the implicit midpoint method [citation needed] —the simplest example of a Gauss–Legendre implicit Runge–Kutta method—which also has the property of being a geometric integrator.