Search results
Results from the WOW.Com Content Network
Download as PDF; Printable version; ... String matching algorithms (1 C, 16 P) Substring indices (13 P) Pages in category "Algorithms on strings"
[6]: 67 Candidates answering questions should consider the use of technology in the present and future, and user scenarios. Some questions involve projects that the candidate has worked on in the past. A coding interview is intended to seek out creative thinkers and those who can adapt their solutions to rapidly changing and dynamic scenarios.
rfind(string,substring) returns integer Description Returns the position of the start of the last occurrence of substring in string. If the substring is not found most of these routines return an invalid index value – -1 where indexes are 0-based, 0 where they are 1-based – or some value to be interpreted as Boolean FALSE. Related instr
In computer science, an algorithm for matching wildcards (also known as globbing) is useful in comparing text strings that may contain wildcard syntax. [1] Common uses of these algorithms include command-line interfaces, e.g. the Bourne shell [2] or Microsoft Windows command-line [3] or text editor or file manager, as well as the interfaces for some search engines [4] and databases. [5]
The std::string class is the standard representation for a text string since C++98. The class provides some typical string operations like comparison, concatenation, find and replace, and a function for obtaining substrings. An std::string can be constructed from a C-style string, and a C-style string can also be obtained from one. [7]
In computer science, the Cocke–Younger–Kasami algorithm (alternatively called CYK, or CKY) is a parsing algorithm for context-free grammars published by Itiroo Sakai in 1961. [ 1 ] [ 2 ] The algorithm is named after some of its rediscoverers: John Cocke , Daniel Younger, Tadao Kasami , and Jacob T. Schwartz .
In theoretical computer science, a Markov algorithm is a string rewriting system that uses grammar-like rules to operate on strings of symbols. Markov algorithms have been shown to be Turing-complete , which means that they are suitable as a general model of computation and can represent any mathematical expression from its simple notation.
The user can search for elements in an associative array, and delete elements from the array. The following shows how multi-dimensional associative arrays can be simulated in standard AWK using concatenation and the built-in string-separator variable SUBSEP: