Search results
Results from the WOW.Com Content Network
The probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density functions respectively.
the product of two random variables is a random variable; addition and multiplication of random variables are both commutative; and; there is a notion of conjugation of random variables, satisfying (XY) * = Y * X * and X ** = X for all random variables X,Y and coinciding with complex conjugation if X is a constant.
A Bernoulli process is a finite or infinite sequence of independent random variables X 1, X 2, X 3, ..., such that for each i, the value of X i is either 0 or 1; for all values of , the probability p that X i = 1 is the same. In other words, a Bernoulli process is a sequence of independent identically distributed Bernoulli trials.
In probability and statistics, an urn problem is an idealized mental exercise in which some objects of real interest (such as atoms, people, cars, etc.) are represented as colored balls in an urn or other container. One pretends to remove one or more balls from the urn; the goal is to determine the probability of drawing one color or another ...
As an example one may consider random variables with densities f n (x) = (1 + cos(2πnx))1 (0,1). These random variables converge in distribution to a uniform U(0, 1), whereas their densities do not converge at all. [3] However, according to Scheffé’s theorem, convergence of the probability density functions implies convergence in ...
Very similar to the second example above, let (X n) n∈ be a sequence of independent, symmetric random variables, where X n takes each of the values 2 n and –2 n with probability 1 / 2 . Let N be the first n ∈ N {\displaystyle \mathbb {N} } such that X n = 2 n .
In probability theory and statistics, the discrete uniform distribution is a symmetric probability distribution wherein each of some finite whole number n of outcome values are equally likely to be observed. Thus every one of the n outcome values has equal probability 1/n. Intuitively, a discrete uniform distribution is "a known, finite number ...
In probability theory, the chain rule [1] (also called the general product rule [2] [3]) describes how to calculate the probability of the intersection of, not necessarily independent, events or the joint distribution of random variables respectively, using conditional probabilities.