Search results
Results from the WOW.Com Content Network
In statistics, the mode is the value that appears most often in a set of data values. [1] If X is a discrete random variable, the mode is the value x at which the probability mass function takes its maximum value (i.e., x=argmax x i P(X = x i)).
The term "mode" in this context refers to any peak of the distribution, not just to the strict definition of mode which is usual in statistics. If there is a single mode, the distribution function is called "unimodal". If it has more modes it is "bimodal" (2), "trimodal" (3), etc., or in general, "multimodal". [2]
In statistics, modes of variation [1] are a continuously indexed set of vectors or functions that are centered at a mean and are used to depict the variation in a population or sample. Typically, variation patterns in the data can be decomposed in descending order of eigenvalues with the directions represented by the corresponding eigenvectors ...
In statistics, a multimodal distribution is a probability distribution with more than one mode (i.e., more than one local peak of the distribution). These appear as distinct peaks (local maxima) in the probability density function, as shown in Figures 1 and 2. Categorical, continuous, and discrete data can all form multimodal distributions.
This distribution for a = 0, b = 1 and c = 0.5—the mode (i.e., the peak) is exactly in the middle of the interval—corresponds to the distribution of the mean of two standard uniform variables, that is, the distribution of X = (X 1 + X 2) / 2, where X 1, X 2 are two independent random variables with standard uniform distribution in [0, 1]. [1]
The grand canonical partition function applies to a grand canonical ensemble, in which the system can exchange both heat and particles with the environment, at fixed temperature, volume, and chemical potential. Other types of partition functions can be defined for different circumstances; see partition function (mathematics) for
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
A sequence of functions () converges uniformly to when for arbitrary small there is an index such that the graph of is in the -tube around f whenever . The limit of a sequence of continuous functions does not have to be continuous: the sequence of functions () = (marked in green and blue) converges pointwise over the entire domain, but the limit function is discontinuous (marked in red).