Search results
Results from the WOW.Com Content Network
A variable is considered dependent if it depends on an independent variable. Dependent variables are studied under the supposition or demand that they depend, by some law or rule (e.g., by a mathematical function), on the values of other variables. Independent variables, in turn, are not seen as depending on any other variable in the scope of ...
Ordinary least squares regression of Okun's law.Since the regression line does not miss any of the points by very much, the R 2 of the regression is relatively high.. In statistics, the coefficient of determination, denoted R 2 or r 2 and pronounced "R squared", is the proportion of the variation in the dependent variable that is predictable from the independent variable(s).
The dependent variable, which are observed in data and often denoted using the scalar ... In matrix notation, the normal equations are written as ...
In mathematics, an ordinary differential equation (ODE) is a differential equation (DE) dependent on only a single independent variable. As with any other DE, its unknown(s) consists of one (or more) function (s) and involves the derivatives of those functions. [ 1 ]
Example scatterplots of various datasets with various correlation coefficients. The most familiar measure of dependence between two quantities is the Pearson product-moment correlation coefficient (PPMCC), or "Pearson's correlation coefficient", commonly called simply "the correlation coefficient".
A set of vectors is said to be affinely dependent if at least one of the vectors in the set can be defined as an affine combination of the others. Otherwise, the set is called affinely independent. Any affine combination is a linear combination; therefore every affinely dependent set is linearly dependent.
When the equations are independent, each equation contains new information about the variables, and removing any of the equations increases the size of the solution set. For linear equations, logical independence is the same as linear independence. The equations x − 2y = −1, 3x + 5y = 8, and 4x + 3y = 7 are linearly dependent. For example ...
The equations 3x + 2y = 6 and 3x + 2y = 12 are independent, because any constant times one of them fails to produce the other one. An independent equation is an equation in a system of simultaneous equations which cannot be derived algebraically from the other equations. [1] The concept typically arises in the context of linear equations.