enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Intensive and extensive properties - Wikipedia

    en.wikipedia.org/wiki/Intensive_and_extensive...

    For example, heat capacity is an extensive property of a system. Dividing heat capacity, , by the mass of the system gives the specific heat capacity, , which is an intensive property. When the extensive property is represented by an upper-case letter, the symbol for the corresponding intensive property is usually represented by a lower-case ...

  3. Table of specific heat capacities - Wikipedia

    en.wikipedia.org/wiki/Table_of_specific_heat...

    For example, Paraffin has very large molecules and thus a high heat capacity per mole, but as a substance it does not have remarkable heat capacity in terms of volume, mass, or atom-mol (which is just 1.41 R per mole of atoms, or less than half of most solids, in terms of heat capacity per atom).

  4. Specific heat capacity - Wikipedia

    en.wikipedia.org/wiki/Specific_heat_capacity

    For example, the heat required to raise the temperature of 1 kg of water by 1 K is 4184 joules, so the specific heat capacity of water is 4184 J⋅kg −1 ⋅K −1. [3] Specific heat capacity often varies with temperature, and is different for each state of matter.

  5. Heat capacity - Wikipedia

    en.wikipedia.org/wiki/Heat_capacity

    Heat capacity or thermal capacity is a physical property of matter, defined as the amount of heat to be supplied to an object to produce a unit change in its temperature. [1] The SI unit of heat capacity is joule per kelvin (J/K). Heat capacity is an extensive property.

  6. List of unsolved problems in chemistry - Wikipedia

    en.wikipedia.org/wiki/List_of_unsolved_problems...

    Protein folding problem: Is it possible to predict the secondary, tertiary and quaternary structure of a polypeptide sequence based solely on the sequence and environmental information? Inverse protein-folding problem: Is it possible to design a polypeptide sequence which will adopt a given structure under certain environmental conditions?

  7. Relations between heat capacities - Wikipedia

    en.wikipedia.org/wiki/Relations_between_heat...

    The heat capacity depends on how the external variables of the system are changed when the heat is supplied. If the only external variable of the system is the volume, then we can write: d S = ( ∂ S ∂ T ) V d T + ( ∂ S ∂ V ) T d V {\displaystyle dS=\left({\frac {\partial S}{\partial T}}\right)_{V}dT+\left({\frac {\partial S}{\partial V ...

  8. Molar heat capacity - Wikipedia

    en.wikipedia.org/wiki/Molar_heat_capacity

    A closely related property of a substance is the heat capacity per mole of atoms, or atom-molar heat capacity, in which the heat capacity of the sample is divided by the number of moles of atoms instead of moles of molecules. So, for example, the atom-molar heat capacity of water is 1/3 of its molar heat capacity, namely 25.3 J⋅K −1 ⋅mol ...

  9. Rüchardt experiment - Wikipedia

    en.wikipedia.org/wiki/Rüchardt_Experiment

    The Rüchardt experiment, [1] [2] [3] invented by Eduard Rüchardt, is a famous experiment in thermodynamics, which determines the ratio of the molar heat capacities of a gas, i.e. the ratio of (heat capacity at constant pressure) and (heat capacity at constant volume) and is denoted by (gamma, for ideal gas) or (kappa, isentropic exponent, for real gas).