Search results
Results from the WOW.Com Content Network
In general, the majority of changes in human intelligence occur at either the onset of development, during the critical period, or during old age (see neuroplasticity). Charles Spearman , who coined the general intelligence factor "g", described intelligence as one's ability to adapt to his environment with a set of useful skills including ...
Neuroplasticity, also known as neural plasticity or just plasticity, is the ability of neural networks in the brain to change through growth and reorganization. Neuroplasticity refers to the brain's ability to reorganize and rewire its neural connections, enabling it to adapt and function in ways that differ from its prior state.
The pruning that is associated with learning is known as small-scale axon terminal arbor pruning. Axons extend short axon terminal arbors toward neurons within a target area. Certain terminal arbors are pruned by competition. The selection of the pruned terminal arbors follow the "use it or lose it" principle seen in synaptic plasticity. This ...
Activity-dependent plasticity is a form of functional and structural neuroplasticity that arises from the use of cognitive functions and personal experience. [1] Hence, it is the biological basis for learning and the formation of new memories.
Two molecular mechanisms for synaptic plasticity involve the NMDA and AMPA glutamate receptors. Opening of NMDA channels (which relates to the level of cellular depolarization) leads to a rise in post-synaptic Ca 2+ concentration and this has been linked to long-term potentiation, LTP (as well as to protein kinase activation); strong depolarization of the post-synaptic cell completely ...
Bienenstock–Cooper–Munro (BCM) theory, BCM synaptic modification, or the BCM rule, named after Elie Bienenstock, Leon Cooper, and Paul Munro, is a physical theory of learning in the visual cortex developed in 1981.
However, in the course of human evolution, we lost the skill while we acquired other language‐related skills: representation, chunking, hierarchical organization, syntactic rules, etc. Brain volume capacity was limited at a certain point in evolution, so we had to lose some function to get a new function."
Neuroconstructivism is a theory that states that phylogenetic developmental processes such as gene–gene interaction, gene–environment interaction [1] and, crucially, ontogeny all play a vital role in how the brain progressively sculpts itself and how it gradually becomes specialized over developmental time.