enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mendelian inheritance - Wikipedia

    en.wikipedia.org/wiki/Mendelian_inheritance

    Mendel found support for this law in his dihybrid cross experiments. In his monohybrid crosses, an idealized 3:1 ratio between dominant and recessive phenotypes resulted. In dihybrid crosses, however, he found a 9:3:3:1 ratios. This shows that each of the two alleles is inherited independently from the other, with a 3:1 phenotypic ratio for each.

  3. Mendelian traits in humans - Wikipedia

    en.wikipedia.org/wiki/Mendelian_traits_in_humans

    Autosomal dominant A 50/50 chance of inheritance. Sickle-cell disease is inherited in the autosomal recessive pattern. When both parents have sickle-cell trait (carrier), a child has a 25% chance of sickle-cell disease (red icon), 25% do not carry any sickle-cell alleles (blue icon), and 50% have the heterozygous (carrier) condition. [1]

  4. Particulate inheritance - Wikipedia

    en.wikipedia.org/wiki/Particulate_inheritance

    Gregor Mendel, the Father of Genetics William Bateson Ronald Fisher. Particulate inheritance is a pattern of inheritance discovered by Mendelian genetics theorists, such as William Bateson, Ronald Fisher or Gregor Mendel himself, showing that phenotypic traits can be passed from generation to generation through "discrete particles" known as genes, which can keep their ability to be expressed ...

  5. Mendelian randomization - Wikipedia

    en.wikipedia.org/wiki/Mendelian_randomization

    The Mendelian randomization method depends on two principles derived from the original work by Gregor Mendel on genetic inheritance. Its foundation come from Mendel’s laws namely 1) the law of segregation in which there is complete segregation of the two allelomorphs in equal number of germ-cells of a heterozygote and 2) separate pairs of allelomorphs segregate independently of one another ...

  6. Genetics - Wikipedia

    en.wikipedia.org/wiki/Genetics

    [1] [2] [3] It is an important branch in biology because heredity is vital to organisms' evolution. Gregor Mendel, a Moravian Augustinian friar working in the 19th century in Brno, was the first to study genetics scientifically. Mendel studied "trait inheritance", patterns in the way traits are handed down from parents to offspring over time.

  7. Simple Mendelian genetics in humans - Wikipedia

    en.wikipedia.org/wiki/Simple_Mendelian_genetics...

    Mendelian traits behave according to the model of monogenic or simple gene inheritance in which one gene corresponds to one trait. Discrete traits (as opposed to continuously varying traits such as height) with simple Mendelian inheritance patterns are relatively rare in nature, and many of the clearest examples in humans cause disorders.

  8. Classical genetics - Wikipedia

    en.wikipedia.org/wiki/Classical_genetics

    Classical genetics is a hallmark of the start of great discovery in biology, and has led to increased understanding of multiple important components of molecular genetics, human genetics, medical genetics, and much more. Thus, reinforcing Mendel's nickname as the father of modern genetics.

  9. Dihybrid cross - Wikipedia

    en.wikipedia.org/wiki/Dihybrid_cross

    Gregor Mendel was an Austrian-Czech monk who bred peas plants in his monastery garden and compared the offspring to figure out inheritance of traits from 1856-1863. [2] He first started looking at individual traits, but began to look at two distinct traits in the same plant.