Search results
Results from the WOW.Com Content Network
Specifically, it is the phosphodiester bonds that link the 3' carbon atom of one sugar molecule and the 5' carbon atom of another (hence the name 3', 5' phosphodiester linkage used with reference to this kind of bond in DNA and RNA chains). [3] The involved saccharide groups are deoxyribose in DNA and ribose in RNA.
This mechanism, as well as others, allows for cross-regulation of the cAMP and cGMP pathways. PDE12 cleaves 2',5'-phosphodiester bond linking adenosines of the 5'-triphosphorylated oligoadenylates. [ 9 ] [ 10 ] PDE12 is not a member of the cyclic nucleotide phosphodiesterase superfamily that contains PDE1 through PDE11.
The proposed molecular mechanism of cyclic nucleotide specificity of PDEs is the so-called glutamine switch mechanism. In the PDEs that have had their structure solved, there seems to be an invariant glutamine residue that stabilizes the binding of the purine ring in the active site (binding pocket).
2) A two-step "associative" (addition-elimination or A N + D N) mechanism that proceeds via a pentavalent phosphorane intermediate. [13] This is represented by the blue dashed lines in the figure at right. 3) A one-step fully synchronous mechanism analogous to S N 2 substitution. Bond formation and breakage occur simultaneously and at the same ...
The mechanism of the ligation reaction was first elucidated in the laboratory of I. Robert Lehman. [4] [5] Two fragments of DNA may be joined by DNA ligase which catalyzes the formation of a phosphodiester bond between the 3'-hydroxyl group (-OH) at one end of a strand of DNA and the 5'-phosphate group (-PO4) of another.
Depiction of the restriction enzyme (endonuclease) HindIII cleaving a double-stranded DNA molecule at a valid restriction site (5'–A|AGCTT–3').. In biochemistry, a nuclease (also archaically known as nucleodepolymerase or polynucleotidase) is an enzyme capable of cleaving the phosphodiester bonds that link nucleotides together to form nucleic acids.
Phosphodiester bonds are formed between ribonucleotides by the enzyme RNA polymerase. The RNA chain is synthesized from the 5' end to the 3' end as the 3'-hydroxyl group of the last ribonucleotide in the chain acts as a nucleophile and launches a hydrophilic attack on the 5'-triphosphate of the incoming ribonucleotide, releasing pyrophosphate ...
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.