enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Tessellation - Wikipedia

    en.wikipedia.org/wiki/Tessellation

    If a geometric shape can be used as a prototile to create a tessellation, the shape is said to tessellate or to tile the plane. The Conway criterion is a sufficient, but not necessary, set of rules for deciding whether a given shape tiles the plane periodically without reflections: some tiles fail the criterion, but still tile the plane. [19]

  3. Pentagonal tiling - Wikipedia

    en.wikipedia.org/wiki/Pentagonal_tiling

    A dodecahedron can be considered a regular tiling of 12 pentagons on the surface of a sphere, with Schläfli symbol {5,3}, having three pentagons around each vertex. One may also consider a degenerate tiling by two hemispheres, with the great circle between them subdivided into five equal arcs, as a pentagonal tiling with Schläfli symbol {5,2}.

  4. Category:Space-filling polyhedra - Wikipedia

    en.wikipedia.org/wiki/Category:Space-filling...

    move to sidebar hide. Help. Polyhedra that can tessellate space to form a honeycomb in which all cells are congruent. Subcategories. This category has the following 2 ...

  5. Einstein problem - Wikipedia

    en.wikipedia.org/wiki/Einstein_problem

    In plane geometry, the einstein problem asks about the existence of a single prototile that by itself forms an aperiodic set of prototiles; that is, a shape that can tessellate space but only in a nonperiodic way. Such a shape is called an einstein, a word play on ein Stein, German for "one stone". [2]

  6. Tesseractic honeycomb - Wikipedia

    en.wikipedia.org/wiki/Tesseractic_honeycomb

    The tesseract can make a regular tessellation of 4-dimensional hyperbolic space, with 5 tesseracts around each face, with Schläfli symbol {4,3,3,5}, called an order-5 tesseractic honeycomb. The Ammann–Beenker tiling is an aperiodic tiling in 2 dimensions obtained by cut-and-project on the tesseractic honeycomb along an eightfold rotational ...

  7. Aperiodic set of prototiles - Wikipedia

    en.wikipedia.org/wiki/Aperiodic_set_of_prototiles

    Although a cube is the only regular polyhedron that admits of tessellation, many non-regular 3-dimensional shapes can tessellate, such as the truncated octahedron. The second part of Hilbert's eighteenth problem asked for a single polyhedron tiling Euclidean 3-space, such that no tiling by it is isohedral (an anisohedral tile).

  8. List of tessellations - Wikipedia

    en.wikipedia.org/wiki/List_of_tessellations

    Dual semi-regular Article Face configuration Schläfli symbol Image Apeirogonal deltohedron: V3 3.∞ : dsr{2,∞} Apeirogonal bipyramid: V4 2.∞ : dt{2,∞} Cairo pentagonal tiling

  9. Cairo pentagonal tiling - Wikipedia

    en.wikipedia.org/wiki/Cairo_pentagonal_tiling

    Infinitely many different pentagons can form this pattern, belonging to two of the 15 families of convex pentagons that can tile the plane. Their tilings have varying symmetries; all are face-symmetric. One particular form of the tiling, dual to the snub square tiling, has tiles with the minimum possible perimeter among all pentagonal tilings ...