Search results
Results from the WOW.Com Content Network
The AMT uses eight 32-bit bitmaps per node to represent a 256-ary trie that is able to represent an 8 bit sequence per node. With 64-Bit-CPUs (64-bit computing) a variation is to have a 64-ary trie with only one 64-bit bitmap per node that is able to represent a 6 bit sequence. Trie node with bitmap that marks valid child branches.
An example of a y-fast trie. The nodes shown in the x-fast trie are the representatives of the O(n / log M) balanced binary search trees.. A y-fast trie consists of two data structures: the top half is an x-fast trie and the lower half consists of a number of balanced binary trees.
A weight-balanced tree is a binary search tree that stores the sizes of subtrees in the nodes. That is, a node has fields key, of any ordered type; value (optional, only for mappings) left, right, pointer to node; size, of type integer. By definition, the size of a leaf (typically represented by a nil pointer) is zero.
Accordingly, the set bit is used to index the first item, or child node, in the 32- or 64-entry based bitwise tree. Search then proceeds by testing each subsequent bit in the key. [19] This procedure is also cache-local and highly parallelizable due to register independency, and thus performant on out-of-order execution CPUs. [19]
In computer science, a B-tree is a self-balancing tree data structure that maintains sorted data and allows searches, sequential access, insertions, and deletions in logarithmic time. The B-tree generalizes the binary search tree, allowing for nodes with more than two children. [2]
To turn a regular search tree into an order statistic tree, the nodes of the tree need to store one additional value, which is the size of the subtree rooted at that node (i.e., the number of nodes below it). All operations that modify the tree must adjust this information to preserve the invariant that size[x] = size[left[x]] + size[right[x]] + 1
Most operations on a binary search tree (BST) take time directly proportional to the height of the tree, so it is desirable to keep the height small. A binary tree with height h can contain at most 2 0 +2 1 +···+2 h = 2 h+1 −1 nodes. It follows that for any tree with n nodes and height h: + And that implies:
In computer science, a 2–3–4 tree (also called a 2–4 tree) is a self-balancing data structure that can be used to implement dictionaries. The numbers mean a tree where every node with children (internal node) has either two, three, or four child nodes: a 2-node has one data element, and if internal has two child nodes;