Search results
Results from the WOW.Com Content Network
Satisfactory output of the complete system comprising the audio crossover and the loudspeaker drivers in their enclosure(s) is the design goal. Such a goal is often achieved using non-ideal, asymmetric crossover filter characteristics. [5] Many different crossover types are used in audio, but they generally belong to one of the following classes.
Amplifier and loudspeaker with two elements and crossover networks. Top: normal connection. Bottom: bi-wiring. Loudspeaker bi-wired using banana plugs. Bi-wiring is a means of connecting a loudspeaker to an audio amplifier, primarily used in hi-fi systems. Normally, there is one pair of connectors on a loudspeaker and a single cable (two ...
The L pad attenuates the signal by having two separate rheostats connected in an "L" configuration (hence the name). One rheostat is connected in series with the loudspeaker and, as the resistance of this rheostat increases, less power is coupled into the loudspeaker and the loudness of sound produced by the loudspeaker decreases.
Bi-amping - An active crossover with two amplifiers.. Bi-amping and tri-amping is the practice of using two or three audio amplifiers respectively to amplify different audio frequency ranges, with the amplified signals being routed to different speaker drivers, such as woofers, subwoofers and tweeters.
This is the biggest advantage of L-R crossovers compared to even-order Butterworth crossovers, whose summed output has a +3 dB peak around the crossover frequency. Since cascading two n th -order Butterworth filters will give a (2 n ) th -order Linkwitz–Riley filter, theoretically any (2 n ) th -order Linkwitz–Riley crossover can be designed.
In 1975 Ed Long [1] in cooperation with Ronald J. Wickersham invented the first technique to Time-Align a loudspeaker systems. In 1976 Long presented "A Time-Align Technique for Loudspeakers System Design" [2] at the 54th AES convention demonstrating the use of the Time-Align generator to design improved crossover networks for multi-way loudspeakers systems.
A loudspeaker (commonly referred to as a speaker or, more fully, a speaker system) is a combination of one or more speaker drivers, an enclosure, and electrical connections (possibly including a crossover network). The speaker driver is an electroacoustic transducer [1]: 597 that converts an electrical audio signal into a corresponding sound. [2]
A loudspeaker enclosure or loudspeaker cabinet is an enclosure (often rectangular box-shaped) in which speaker drivers (e.g., loudspeakers and tweeters) and associated electronic hardware, such as crossover circuits and, in some cases, power amplifiers, are mounted.