Search results
Results from the WOW.Com Content Network
in a removable discontinuity, the distance that the value of the function is off by is the oscillation; in a jump discontinuity, the size of the jump is the oscillation (assuming that the value at the point lies between these limits from the two sides); in an essential discontinuity, oscillation measures the failure of a limit to exist.
in a removable discontinuity, the distance that the value of the function is off by is the oscillation; in a jump discontinuity, the size of the jump is the oscillation (assuming that the value at the point lies between these limits of the two sides); in an essential discontinuity, oscillation measures the failure of a limit to exist.
A Riemann problem, named after Bernhard Riemann, is a specific initial value problem composed of a conservation equation together with piecewise constant initial data which has a single discontinuity in the domain of interest.
Generally speaking, Riemann solvers are specific methods for computing the numerical flux across a discontinuity in the Riemann problem. [1] They form an important part of high-resolution schemes; typically the right and left states for the Riemann problem are calculated using some form of nonlinear reconstruction, such as a flux limiter or a WENO method, and then used as the input for the ...
is called oscillating if it has an infinite number of roots; otherwise it is called non-oscillating. The differential equation is called oscillating if it has an oscillating solution. The number of roots carries also information on the spectrum of associated boundary value problems .
Oscillation is the repetitive or periodic variation, typically in time, of some measure about a central value (often a point of equilibrium) or between two or more different states. Familiar examples of oscillation include a swinging pendulum and alternating current. Oscillations can be used in physics to approximate complex interactions, such ...
The Roe approximate Riemann solver, devised by Phil Roe, is an approximate Riemann solver based on the Godunov scheme and involves finding an estimate for the intercell numerical flux or Godunov flux + at the interface between two computational cells and +, on some discretised space-time computational domain.
Since the Gibbs phenomenon comes from undershooting, it may be eliminated by using kernels that are never negative, such as the Fejér kernel. [12] [13]In practice, the difficulties associated with the Gibbs phenomenon can be ameliorated by using a smoother method of Fourier series summation, such as Fejér summation or Riesz summation, or by using sigma-approximation.