enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Eccentricity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Eccentricity_(mathematics)

    The linear eccentricity of an ellipse or hyperbola, denoted c (or sometimes f or e), is the distance between its center and either of its two foci. The eccentricity can be defined as the ratio of the linear eccentricity to the semimajor axis a : that is, e = c a {\displaystyle e={\frac {c}{a}}} (lacking a center, the linear eccentricity for ...

  3. Hyperbola - Wikipedia

    en.wikipedia.org/wiki/Hyperbola

    The following are also concurrent: (1) the circle that is centered at the hyperbola's center and that passes through the hyperbola's vertices; (2) either directrix; and (3) either of the asymptotes. [22] Since both the transverse axis and the conjugate axis are axes of symmetry, the symmetry group of a hyperbola is the Klein four-group.

  4. Semi-major and semi-minor axes - Wikipedia

    en.wikipedia.org/wiki/Semi-major_and_semi-minor_axes

    The semi-major axis of a hyperbola is, depending on the convention, plus or minus one half of the distance between the two branches. Thus it is the distance from the center to either vertex of the hyperbola.

  5. Conic section - Wikipedia

    en.wikipedia.org/wiki/Conic_section

    The principal axis is the line joining the foci of an ellipse or hyperbola, and its midpoint is the curve's center. A parabola has no center. The linear eccentricity (c) is the distance between the center and a focus. The latus rectum is the chord parallel to the directrix and passing through a focus; its half-length is the semi-latus rectum (ℓ).

  6. Focus (geometry) - Wikipedia

    en.wikipedia.org/wiki/Focus_(geometry)

    A conic is defined as the locus of points for each of which the distance to the focus divided by the distance to the directrix is a fixed positive constant, called the eccentricity e. If 0 < e < 1 the conic is an ellipse, if e = 1 the conic is a parabola, and if e > 1 the conic is a hyperbola.

  7. Kepler orbit - Wikipedia

    en.wikipedia.org/wiki/Kepler_orbit

    The distance to the focal point is a function of the polar angle relative to the horizontal line as given by the equation In celestial mechanics , a Kepler orbit (or Keplerian orbit , named after the German astronomer Johannes Kepler ) is the motion of one body relative to another, as an ellipse , parabola , or hyperbola , which forms a two ...

  8. Locus (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Locus_(mathematics)

    Circle: the set of points at constant distance (the radius) from a fixed point (the center). Parabola: the set of points equidistant from a fixed point (the focus) and a line (the directrix). Hyperbola: the set of points for each of which the absolute value of the difference between the distances to two given foci is a constant.

  9. List of centroids - Wikipedia

    en.wikipedia.org/wiki/List_of_centroids

    The following is a list of centroids of various two-dimensional and three-dimensional objects. The centroid of an object in -dimensional space is the intersection of all hyperplanes that divide into two parts of equal moment about the hyperplane.