enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. VSEPR theory - Wikipedia

    en.wikipedia.org/wiki/VSEPR_theory

    Another example is O(SiH 3) 2 with an Si–O–Si angle of 144.1°, which compares to the angles in Cl 2 O (110.9°), (CH 3) 2 O (111.7°), and N(CH 3) 3 (110.9°). [24] Gillespie and Robinson rationalize the Si–O–Si bond angle based on the observed ability of a ligand's lone pair to most greatly repel other electron pairs when the ligand ...

  3. Molecular geometry - Wikipedia

    en.wikipedia.org/wiki/Molecular_geometry

    This shape is found when there are four bonds all on one central atom, with no extra unshared electron pairs. In accordance with the VSEPR (valence-shell electron pair repulsion theory), the bond angles between the electron bonds are arccos(− ⁠ 1 / 3 ⁠) = 109.47°. For example, methane (CH 4) is a tetrahedral molecule.

  4. Square pyramidal molecular geometry - Wikipedia

    en.wikipedia.org/wiki/Square_pyramidal_molecular...

    Square pyramidal geometry describes the shape of certain chemical compounds with the formula ML 5 where L is a ligand. If the ligand atoms were connected, the resulting shape would be that of a pyramid with a square base. The point group symmetry involved is of type C 4v.

  5. T-shaped molecular geometry - Wikipedia

    en.wikipedia.org/wiki/T-shaped_molecular_geometry

    According to VSEPR theory, T-shaped geometry results when three ligands and two lone pairs of electrons are bonded to the central atom, written in AXE notation as AX 3 E 2. The T-shaped geometry is related to the trigonal bipyramidal molecular geometry for AX 5 molecules with three equatorial and two axial ligands.

  6. Trigonal pyramidal molecular geometry - Wikipedia

    en.wikipedia.org/wiki/Trigonal_pyramidal...

    This would result in the geometry of a regular tetrahedron with each bond angle equal to arccos(− ⁠ 1 / 3 ⁠) ≈ 109.5°. However, the three hydrogen atoms are repelled by the electron lone pair in a way that the geometry is distorted to a trigonal pyramid (regular 3-sided pyramid) with bond angles of 107°.

  7. Linear molecular geometry - Wikipedia

    en.wikipedia.org/wiki/Linear_molecular_geometry

    The linear molecular geometry describes the geometry around a central atom bonded to two other atoms (or ligands) placed at a bond angle of 180°. Linear organic molecules, such as acetylene (HC≡CH), are often described by invoking sp orbital hybridization for their carbon centers. Two sp orbitals

  8. Square antiprismatic molecular geometry - Wikipedia

    en.wikipedia.org/wiki/Square_antiprismatic...

    This shape has D 4d symmetry and is one of the three common shapes for octacoordinate transition metal complexes, along with the dodecahedron and the bicapped trigonal prism. [2] [3] Like with other high coordination numbers, eight-coordinate compounds are often distorted from idealized geometries, as illustrated by the structure of Na 3 TaF 8.

  9. Square planar molecular geometry - Wikipedia

    en.wikipedia.org/wiki/Square_planar_molecular...

    Representative d-orbital splitting diagrams for square planar complexes featuring σ-donor (left) and σ+π-donor (right) ligands. A general d-orbital splitting diagram for square planar (D 4h) transition metal complexes can be derived from the general octahedral (O h) splitting diagram, in which the d z 2 and the d x 2 −y 2 orbitals are degenerate and higher in energy than the degenerate ...