Search results
Results from the WOW.Com Content Network
If p is a prime number which is not a divisor of b, then ab p−1 mod p = a mod p, due to Fermat's little theorem. Inverse: [(−a mod n) + (a mod n)] mod n = 0. b −1 mod n denotes the modular multiplicative inverse, which is defined if and only if b and n are relatively prime, which is the case when the left hand side is defined: [(b −1 ...
A simple consequence of Fermat's little theorem is that if p is prime, then a −1 ≡ a p−2 (mod p) is the multiplicative inverse of 0 < a < p. More generally, from Euler's theorem, if a and m are coprime, then a −1 ≡ a φ(m)−1 (mod m). Hence, if ax ≡ 1 (mod m), then x ≡ a φ(m)−1 (mod m).
Modulo is a mathematical jargon that was introduced into mathematics in the book Disquisitiones Arithmeticae by Carl Friedrich Gauss in 1801. [3] Given the integers a, b and n, the expression "a ≡ b (mod n)", pronounced "a is congruent to b modulo n", means that a − b is an integer multiple of n, or equivalently, a and b both share the same remainder when divided by n.
If a instead is one, the variable base (containing the value b 2 i mod m of the original base) is simply multiplied in. In this example, the base b is raised to the exponent e = 13. The exponent is 1101 in binary. There are four binary digits, so the loop executes four times, with values a 0 = 1, a 1 = 0, a 2 = 1, and a 3 = 1.
For any integer n, n ≡ 1 (mod 2) if and only if 3n + 1 / 2 ≡ 2 (mod 3). Equivalently, 2n − 1 / 3 ≡ 1 (mod 2) if and only if n ≡ 2 (mod 3). Conjecturally, this inverse relation forms a tree except for a 1–2 loop (the inverse of the 1–2 loop of the function f(n) revised as indicated above).
The gcd(4, 10) = 2 and 2 does not divide 5, but does divide 6. Since gcd(3, 10) = 1, the linear congruence 3x ≡ 1 (mod 10) will have solutions, that is, modular multiplicative inverses of 3 modulo 10 will exist. In fact, 7 satisfies this congruence (i.e., 21 − 1 = 20).
Quadratic residues are highlighted in yellow, and correspond precisely to the values 0 and 1. In number theory , the Legendre symbol is a multiplicative function with values 1, −1, 0 that is a quadratic character modulo of an odd prime number p : its value at a (nonzero) quadratic residue mod p is 1 and at a non-quadratic residue ( non ...
For, if not, it would be congruent to 1 mod 3 and 2p + 1 would be congruent to 3 mod 3, impossible for a prime number. [16] Similar restrictions hold for larger prime moduli, and are the basis for the choice of the "correction factor" 2 C in the Hardy–Littlewood estimate on the density of the Sophie Germain primes.