Search results
Results from the WOW.Com Content Network
This is a list of well-known dimensionless quantities illustrating their variety of forms and applications. The tables also include pure numbers , dimensionless ratios, or dimensionless physical constants ; these topics are discussed in the article.
Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.
Dimensionless quantities, or quantities of dimension one, [1] are quantities implicitly defined in a manner that prevents their aggregation into units of measurement. [ 2 ] [ 3 ] Typically expressed as ratios that align with another system, these quantities do not necessitate explicitly defined units .
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more
Dimensionless quantities, or quantities of dimension one, [2] are quantities implicitly defined in a manner that prevents their aggregation into units of measurement. [3] [4] Typically expressed as ratios that align with another system, these quantities do not necessitate explicitly defined units.
Download QR code; Print/export Download as PDF; Printable version; In other projects Wikimedia Commons; ... Dimensionless quantities (2 C, 9 P) R. Ratios (11 C, 58 P) T.
The Deborah number (De) is a dimensionless number, often used in rheology to characterize the fluidity of materials under specific flow conditions. It quantifies the observation that given enough time even a solid-like material might flow, or a fluid-like material can act solid when it is deformed rapidly enough.
The first table lists the fundamental quantities used in the International System of Units to define the physical dimension of physical quantities for dimensional analysis. The second table lists the derived physical quantities. Derived quantities can be expressed in terms of the base quantities.