Search results
Results from the WOW.Com Content Network
The lateral surface area of a right circular cone is = where is the radius of the circle at the bottom of the cone and is the slant height of the cone. [4] The surface area of the bottom circle of a cone is the same as for any circle, . Thus, the total surface area of a right circular cone can be expressed as each of the following: Radius and ...
Area Perimeter/Circumference Meanings of symbols ... This is a list of volume formulas of basic shapes: [4]: 405–406 Cone – ...
This formula can also be derived without the use of calculus. Over 2200 years ago Archimedes proved that the surface area of a spherical cap is always equal to the area of a circle whose radius equals the distance from the rim of the spherical cap to the point where the cap's axis of symmetry intersects the cap. [3]
The ratio of a circle's circumference to its diameter is π (pi), an irrational constant approximately equal to 3.141592654. The ratio of a circle's circumference to its radius is 2 π. [a] Thus the circumference C is related to the radius r and diameter d by: = =.
The circumference is the arc length of the circle, as if it were opened up and straightened out to a line segment. [1] More generally, the perimeter is the curve length around any closed figure. Circumference may also refer to the circle itself, that is, the locus corresponding to the edge of a disk. The circumference of a sphere is the ...
The volume of the cone is 1/3 its base area times the height. The base of the cone is a circle of radius 2, with area , while the height is 2, so the area is /. Subtracting the volume of the cone from the volume of the cylinder gives the volume of the sphere:
The area of an ellipse is proportional to a rectangle having sides equal to its major and minor axes; The volume of a sphere is 4 times that of a cone having a base of the same radius and height equal to this radius; The volume of a cylinder having a height equal to its diameter is 3/2 that of a sphere having the same diameter;
If the radius of the sphere is denoted by r and the height of the cap by h, the volume of the spherical sector is =. This may also be written as V = 2 π r 3 3 ( 1 − cos φ ) , {\displaystyle V={\frac {2\pi r^{3}}{3}}(1-\cos \varphi )\,,} where φ is half the cone aperture angle, i.e., φ is the angle between the rim of the cap and the ...