Search results
Results from the WOW.Com Content Network
"x^y = y^x - commuting powers". Arithmetical and Analytical Puzzles. Torsten Sillke. Archived from the original on 2015-12-28. dborkovitz (2012-01-29). "Parametric Graph of x^y=y^x". GeoGebra. OEIS sequence A073084 (Decimal expansion of −x, where x is the negative solution to the equation 2^x = x^2)
The graph of a function is usually described by an equation = in which the functional form is explicitly stated; this is called an explicit representation. The third essential description of a curve is the parametric one, where the x- and y-coordinates of curve points are represented by two functions x(t), y(t) both of whose functional forms ...
Two other solutions are x = 3, y = 6, z = 1, and x = 8, y = 9, z = 2. There is a unique plane in three-dimensional space which passes through the three points with these coordinates, and this plane is the set of all points whose coordinates are solutions of the equation.
For the quadratic function y = x 2 − x − 2, the points where the graph crosses the x-axis, x = −1 and x = 2, are the solutions of the quadratic equation x 2 − x − 2 = 0. The process of completing the square makes use of the algebraic identity x 2 + 2 h x + h 2 = ( x + h ) 2 , {\displaystyle x^{2}+2hx+h^{2}=(x+h)^{2},} which represents ...
The solutions –1 and 2 of the polynomial equation x 2 – x + 2 = 0 are the points where the graph of the quadratic function y = x 2 – x + 2 cuts the x-axis. In general, an algebraic equation or polynomial equation is an equation of the form =, or = [a]
A transcendental equation need not be an equation between elementary functions, although most published examples are. In some cases, a transcendental equation can be solved by transforming it into an equivalent algebraic equation. Some such transformations are sketched below; computer algebra systems may provide more elaborated transformations. [a]
Consider the problem of calculating the shape of an unknown curve which starts at a given point and satisfies a given differential equation. Here, a differential equation can be thought of as a formula by which the slope of the tangent line to the curve can be computed at any point on the curve, once the position of that point has been calculated.
It can similarly be shown that if + + = + , x = −1 is a root. In either case the full quartic can then be divided by the factor (x − 1) or (x + 1) respectively yielding a new cubic polynomial, which can be solved to find the quartic's other roots.