Search results
Results from the WOW.Com Content Network
H {\displaystyle H} is the magnitude of the applied magnetic field (A/m), T {\displaystyle T} is absolute temperature (K), C {\displaystyle C} is a material-specific Curie constant (K). Pierre Curie discovered this relation, now known as Curie's law, by fitting data from experiment. It only holds for high temperatures and weak magnetic fields.
Electron Magnetohydrodynamics (EMHD) describes small scales plasmas when electron motion is much faster than the ion one. The main effects are changes in conservation laws, additional resistivity, importance of electron inertia. Many effects of Electron MHD are similar to effects of the Two fluid MHD and the Hall MHD.
is the Boltzmann constant and the temperature. Note that in the SI system of units B {\displaystyle B} given in Tesla stands for the magnetic field , B = μ 0 H {\displaystyle B=\mu _{0}H} , where H {\displaystyle H} is the auxiliary magnetic field given in A/m and μ 0 {\displaystyle \mu _{0}} is the permeability of vacuum .
The magnetosphere of Jupiter is the largest planetary magnetosphere in the Solar System, extending up to 7,000,000 kilometers (4,300,000 mi) on the dayside and almost to the orbit of Saturn on the nightside. [17] Jupiter's magnetosphere is stronger than Earth's by an order of magnitude, and its magnetic moment is approximately 18,000 times ...
Energy per unit temperature change J/K L 2 M T −2 Θ −1: extensive Heat flux density: ϕ Q: Heat flow per unit time per unit surface area W/m 2: M T −3: Illuminance: E v: Wavelength-weighted luminous flux per unit surface area lux (lx = cd⋅sr/m 2) L −2 J: Impedance: Z: Resistance to an alternating current of a given frequency ...
Above the Curie temperature, the magnetic spins are randomly aligned in a paramagnet unless a magnetic field is applied. In physics and materials science, the Curie temperature (TC), or Curie point, is the temperature above which certain materials lose their permanent magnetic properties, which can (in most cases) be replaced by induced magnetism.
v. t. e. In electromagnetism, permeability is the measure of magnetization produced in a material in response to an applied magnetic field. Permeability is typically represented by the (italicized) Greek letter μ. It is the ratio of the magnetic induction to the magnetizing field as a function of the field in a material.
Schematic view of the different current systems which shape the Earth's magnetosphere. Earth 's ring current is responsible for shielding the lower latitudes of the Earth from magnetospheric electric fields. It therefore has a large effect on the electrodynamics of geomagnetic storms. The ring current system consists of a band, at a distance of ...