enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Momentum - Wikipedia

    en.wikipedia.org/wiki/Momentum

    Conservation of momentum is a mathematical consequence of the homogeneity (shift symmetry) of space (position in space is the canonical conjugate quantity to momentum). That is, conservation of momentum is a consequence of the fact that the laws of physics do not depend on position; this is a special case of Noether's theorem. [25] For systems ...

  3. Conservation law - Wikipedia

    en.wikipedia.org/wiki/Conservation_law

    Conservation law. In physics, a conservation law states that a particular measurable property of an isolated physical system does not change as the system evolves over time. Exact conservation laws include conservation of mass-energy, conservation of linear momentum, conservation of angular momentum, and conservation of electric charge.

  4. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    The conservation of momentum is restored by including the momentum stored in the field that describes the bodies' interaction. [ 83 ] [ 84 ] Newtonian mechanics is a good approximation to special relativity when the speeds involved are small compared to that of light.

  5. Noether's theorem - Wikipedia

    en.wikipedia.org/wiki/Noether's_theorem

    The local conservation of non-gravitational linear momentum and energy in a free-falling reference frame is expressed by the vanishing of the covariant divergence of the stress–energy tensor. Another important conserved quantity, discovered in studies of the celestial mechanics of astronomical bodies, is the Laplace–Runge–Lenz vector.

  6. Angular momentum - Wikipedia

    en.wikipedia.org/wiki/Angular_momentum

    Angular momentum (sometimes called moment of momentum or rotational momentum) is the rotational analog of linear momentum. It is an important physical quantity because it is a conserved quantity – the total angular momentum of a closed system remains constant.

  7. Newton's cradle - Wikipedia

    en.wikipedia.org/wiki/Newton's_cradle

    Newton's cradle. 3-D rendering of the cradle in motion. Newton's cradle is a device, usually made of metal, that demonstrates the principles of conservation of momentum and conservation of energy in physics with swinging spheres. When one sphere at the end is lifted and released, it strikes the stationary spheres, compressing them and thereby ...

  8. Fluid dynamics - Wikipedia

    en.wikipedia.org/wiki/Fluid_dynamics

    The conservation laws may be applied to a region of the flow called a control volume. A control volume is a discrete volume in space through which fluid is assumed to flow. The integral formulations of the conservation laws are used to describe the change of mass, momentum, or energy within the control volume.

  9. Continuity equation - Wikipedia

    en.wikipedia.org/wiki/Continuity_equation

    For example, the stress–energy tensor is a second-order tensor field containing energy–momentum densities, energy–momentum fluxes, and shear stresses, of a mass-energy distribution. The differential form of energy–momentum conservation in general relativity states that the covariant divergence of the stress-energy tensor is zero: T μ ...