Search results
Results from the WOW.Com Content Network
Conservation of momentum is a mathematical consequence of the homogeneity (shift symmetry) of space (position in space is the canonical conjugate quantity to momentum). That is, conservation of momentum is a consequence of the fact that the laws of physics do not depend on position; this is a special case of Noether's theorem. [25] For systems ...
Conservation law. In physics, a conservation law states that a particular measurable property of an isolated physical system does not change as the system evolves over time. Exact conservation laws include conservation of mass-energy, conservation of linear momentum, conservation of angular momentum, and conservation of electric charge.
The conservation of momentum is restored by including the momentum stored in the field that describes the bodies' interaction. [ 83 ] [ 84 ] Newtonian mechanics is a good approximation to special relativity when the speeds involved are small compared to that of light.
The local conservation of non-gravitational linear momentum and energy in a free-falling reference frame is expressed by the vanishing of the covariant divergence of the stress–energy tensor. Another important conserved quantity, discovered in studies of the celestial mechanics of astronomical bodies, is the Laplace–Runge–Lenz vector.
Angular momentum (sometimes called moment of momentum or rotational momentum) is the rotational analog of linear momentum. It is an important physical quantity because it is a conserved quantity – the total angular momentum of a closed system remains constant.
Newton's cradle. 3-D rendering of the cradle in motion. Newton's cradle is a device, usually made of metal, that demonstrates the principles of conservation of momentum and conservation of energy in physics with swinging spheres. When one sphere at the end is lifted and released, it strikes the stationary spheres, compressing them and thereby ...
The conservation laws may be applied to a region of the flow called a control volume. A control volume is a discrete volume in space through which fluid is assumed to flow. The integral formulations of the conservation laws are used to describe the change of mass, momentum, or energy within the control volume.
For example, the stress–energy tensor is a second-order tensor field containing energy–momentum densities, energy–momentum fluxes, and shear stresses, of a mass-energy distribution. The differential form of energy–momentum conservation in general relativity states that the covariant divergence of the stress-energy tensor is zero: T μ ...